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I.IR!PRODUCTION 

What is so special about the new particles and why Is 
there such excitement? So many old particles have been known for 
a longtime that the discovery of an additional particle has 
created very little excitement. An unbiased observer from another 
field would conclude "seen one particle, seen them all." 

~Hovever, the new particles vere IsmedIately seen to be peculiar 
and Interesting because they are very narrow states at high 
excitation and nobody still understands why these states are so 

The only argument given slrpportlng the narrovnesa 1s 
.-Ezkn the Okubo-Zwelg-Ilzuka rule, but nobody understandatha 
~OZI tile even for the old particles, vhere many interesting open. 
questions still remain. There must be interesting physics inthle 
rule worthy of further theoretical and experimental lnvestigatlon.- 
The major part of these talks Is devoted to Interesting questions 
regarding the theoretical valldity and possible experimenta?. tasks 
of the OZI rule. 

Intrying-to explain to some of my nuclear colleagues 
vhy these nev particles are so exciting and Interesting, I-flrat 
tell them they are narrow resonances that appear at much too high 
excitation for their narrowness. The nuclear physicist says, 
'We know about those things. We have them too; isobaric analogr 
states". Then I explain that they were completely unexpected. 
No one thought that they were going to be there. He says, "Of 
mm-se. Theorists didn't expect isobaric analog resonances 
either. But as soon as they were found, they had the explanation'. 
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Then I say, "That's the difference. As ~cmn 8s the new p-:rticles 
were found, all the theorists came out with explanations, but all 
of them are wrong. And they still don't understand why the 
particles are so narrow." .4s soon as the new particles were found 
theorists dug into their old files and tried to show that their 
old theories really predicted these particles. One theorist 
actually quoted the reference to an old paper where he claimed he 
had predicted these particles. One of our nasty graduate students 
actually looked up the reference and gleefully circulated the 
abstract around the denartment. The abstract said that this was 

the only paper explaining the new weak neutral currents without 
requiring the existence of new particles for which there was no 
experimental evidence. The status of the new particles is well 
described by the following quotation: 

'1 have no data as yet. It is a capital mistake 
to theorize before one has data. Insensibly one 
begins to twist facts to suit theories, instead 
of theories to suit facts." 

. . ..A. Conan Doyle 
'The Adventures of Sherlock Holmes' 

Niels Bohr developed his model of the atom on the baBiB 
of the experimental data of the Balmer series. Much hard work by 
many people was then needed to get modern quantum mechanics 
started. But today's theorists are trying to develop a theory for 
the new particles as beautiful as modern quantum mechanics when 
they don't even have the Balmer series. 

During the time that this talk was being prepared and 
even during the Erice school itself, new data were being 
accumulated indicating that the new particles were those theore- 
tically predicted by the charm scheme in which an additional 
fourth vcharmed" quark* is added to the three conventional 
members of the quark triplet. All this charm spectroscopy was 
known long before the discovery of the new particles. Searches 
for charm have been suggested for a long time. Yet nobody 
suggested that SLAC search for very narrow resonances in electron- 
positron annihilation in the 3-GeV range. It is instructive to 
examine why nobody suggested such a search. 

Vector meson states constructed from a charmed quark- 
antiquark pair were predicted long before the discovery of the new 
particles but they were not expected to have narrow widths. Since 
their decays int 

t 
ordinary uncharmed states was known to violate 

the OkuboS-Zweig -1izuka5 rule, these states were expected to be 
narrower than conventional uncharmed states at this mass. But 
there was no reliable theory underlying the OZI rule and its 
breaking and no theoretical calculation predicting the strength of 
OZI violation. The only clue was experimental OZI violating 
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decays into nonstrange hadrcns of mesons consisting of a strange 
quark-antiquark pair e.g., the 6 -) 0" decay. These indicated that 
021 suppression factors were one order of magnitude, possibly t;io 
but certainly not more. This would still leave a large width for 
a state at 3 GeV with many open channels. Such a state would not 
easily be see" as a resonance in electron-positron annihilation. 

Thus even if the charm model is correct, one crucial step 
is missing in the description of the new particles and responsible 
for the failure to predict their discovery. This missing link is 
understanding the OZI rule and why the suppression factor is very 
much larger for the new particles than for forbidden old-particle 
transitions. This question is still open and considered in detail 
in these talks. Some indications, but no conclusive answers, are 
given, but answers should not be expected from this talk. They 
say that when one asks a Jew a question he answers by answering 
with another question and when he is asked why he always answers 
a question by asking another question, he answers "why not?". 
I shall raise many questions in this talk but I shall not answer 
them. Instead I will raise more questions. I hope that pursuing 
the answers to these questions will lead to even more interesting 
questions and to a better understanding of hadron physics. 

II. TUE ~(6) BANDWAGON 

Row can pedestrians understand the new particles when 
we still have so much trouble understanding the old particles? 
We still don't understand why the old hadron pectrum has bee" fit 
very successfully by a" SU(6) symmetry scheme z which suggests that 
hadrons are built from elementary objects called quarks with spin 
l/2 and three flavors. If hadrons are made of quarks, and the 
forces are independent of charge, strangeness and spin, all of 
these six states are equivalent and transformations among them 
generate a" ~$6) symmetry. Particles can the" be classified into 
SU(6) multiplets. The lowest-lying mesons and baryons fit very 
beautifully into two SU(~) sunermultiplets, the baryons in a 
56-plet, the mesons in a 35-plet and a singlet. Since the SU(G) 
scheme was proposed more new evidence has been found for additional 
56-plets, 35-plets and 70-pletz. Rosner's review7 at the 1974 
London conference listed the known SU(~) multiplets as a 
%ichelin Guide" in which he gave four stars, three stars, and 
two stars to the multiplets, depending on how well they were 
established experimentally. But where are the quarks? 

Now we have a new SJ(6), which I call the Sicilian SU(6) 
because it was invented by a Sicilian (with some help from another 
island). Arima and Iache suggest that we should not stop with 
the 56-plet obtained by putting three basic building blocks having 
six states in a totally symmetric configuration. Why not try the 
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252-plet or 1287-plet, obtained by using fi-;e or eight building 
blocks? Arima and Iechello have played the standard game of 
building an SU(6) supermultiplet degen crate in the swetry limit, 
removing the degeneracy by using a simple ansatz for symmetry 
breaking and obtaining a mass formula r;hich they compare smith 
experiment. Figure 2.1 shows a typical hadron spectrum obtained 
in this way from the 1287-plet. Figure 2.2 shows a comparison 
with experiment of the lowest states in the 252-plet and the 
spectrum of hadrons with baryon number 170 and electric charge 68. 
Further spectra and comparisons with experiment are shown in 
Figs. 2.3 and 2.4. 

This SU(~) bandwagon is very amusing: Particle physicists 
build particles from a fundamental building block with six possible 
states and introduce an SU(~) symmetry. But nobody has found any 
quarks, and more data are needed to see whether this symmetry is 
really there and particles are really made out of quarks. 

Now the nuclear physicists have jumped on the SU(~) 
bandwagon. If particles can be made out of a sextet of objects 
that are not really there, maybe nuclei are too. But the Arima- 
Iachello nuclear SU(~) model is not based on elementary fermion 
quarks. Their building blocks have six states, but they are 
bosons, one with spin zero and one with spin two. Everyone knows 
that there are no elementary bosons in the nucleus, but the 
agreement with experiment shown in Figs. 2.2, 2.3 and 2.4 is just 
as impressive as the quark model fits to particle data. Perhaps 
the bosons in the nucleus are just as real or unreal as the 
quarks in the particles. 

Why do nuclei look like composite systems of S = 0 and 
S = 2 bosons which nobody has seen? 3hy do hadrons look like 
composite systems of spin-l/2-three-flavored quarks which nobody 
has seen? Are these bosons or quarks confined? Are they in a bag? 
Or are they simply not there? Perhaps there is an underlying 
substructure which makes nuclei behave as if they were made of 
bosons in certain experiments and makes hadrons behave as i? they 
were made out of quarks. 

But bosons in the nucleus is not really as crazy as it 
sounds. We know that nuclei are made of neutrons and protons. If 
they pair in some fashion they may behave somehow like bosons. 
Before the BCS theory there were suggestions that Bose 
condensation of electron pairs was responsible for superconductivity. 
Then BCS showed how a proper treatment gave not only the properties 
that look like bosons b?ut also the important differences between 
fermion-pairs and real bosons. So maybe there is something in 
this boson model of the nucleus and we are waiting for the right 
theoretical description. 
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Fig. 2.1. Typical hadron spectrum from 1287-plet. 
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Let us now discuss the nuclear SU(~) and Figs. 2.1-2.4 
in slightly more detail. Figure 2.1 shows a typical ~(6) surer- 
multiplet with the energy spectrum obtained when ~~(61 is broken 
by a particular type of boson-boson interaction that preserves the 
subgroup W(3). The spectrum looks very much like that found in 
the nuclear collective model with a ground-state rotational band 
and beta and gamma vibrations. The states are labelled by the 
quantum numbers of the SU(3) classification. Data are fitted in a 
large group of nuclei in the rare earth and transuraniw regions 
where these rotational and vibrational spectra occur. The example 
of l7%r shown in Fig. 2.2 has experimental energy levels which fit 
two SU(3) multiplets which are just the lowest two multiplets 
found in a single SU(6) supermultiplet. 

In particle physics, the SU(3) subgroup of ~(6) gives 
a good classification for baryon states, but the SU(4) group works 
better for mesons. For nuclei the SU(3) subgroup of SU(~) gives a 
good description of rotational nuclei; while the SU(5) subgroup 
works better for vibrational nuclei. Figures 2.3 and 2.4 show 
typical vibrational spectra and some fits to vibrational nuclei. 

III. TRE SEARCH FOR NEW DEGREES OF FREEDOM 

What are these new particles? They indicate some new 
degree of freedom, but what is it? At the Palermo conference, 
Cabbibo9 presented the charm approach as analogous to the search 
for the planet Neptmxa where other data on irregularities in the 
orbit of Uranus had indicated something must be there. 
to any search is two key questionslC: 

My guide 
1) who needs it? and 2) 

who cares if it is not found? In the case of the planet Neptune 
anybody who believed Mewton's descriptions of the motions of the 
planets knew that something had to be there. It would have been 
very serious if nothing was found to produce the observed 
irregularities in the orbit of Uranus. But if all the new 
additional particles that are suggested by new theories are not 
found the theorists will find .?ew excuses for their absence and 
change the theory a bit to explain it. As a guide to the search 
for new degrees of freedom, it is instructive to recall the search 
for a higher symmetry11~12 that eventually turned out to be SU(3). 
It begins with isospin, which is SU(2) and strangeness, which is 
u(1). The correct higher symmetry SU(3) which included SU(2) and 
U(l), was found by an eight-year journey, in which all possible 
wrong symmetries were tried first. Xhhen they finally found SU(3) 
they called it the eight-fold way because it took them eight years 
to find it. 

Why did it take so long? 
else because before they tried SU(3) 

Vhy did they try everything 
instead of noting that 

SU(2) + U(1) c SU(3) is as simple as 2+1 = 3. Physicists are not 
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stupid; the reason that they could not see that 2 + 1 = 5 was 
because they did not know that they had two. In those days 
isospin ;;as believed to be a rotation in a three-dimensional space 
like ordinaq spin, described by isospin operators similar to 
angular momentum operators. The natural candidates for a higher 
symmetry to include isospin rotations were rotations in four, five, 
six, seven and eight dimensions. mane of these worked because the 
algebra of the group of three dimensional rotations is accidentally 
isomorphic to the algebra of two-dimensional unitary transformations 
and isospin is really W(2), not O(3). The two-dimensional Hilbert 
space of proton and neutron states and the transformations of 
protons and neutrons into one another have no relation to any 
physical three-dimensional space. 

Beyond three dimensions there is no longer this 
isomorphism between rotations and unitary transformations. Thus 
theorists could not get anywhere by extrapolating what they 
already had. They had to learn something nev, but they did not 
realize it. At the Princeton Institute for Advanced Study many 
now famous theoretical particle physicists did not bother going to 
Guilio Racah's famous lectures on Group Theory and Spectroscopy 13 
because they did not think unitary groups had anything to do with 
particle physics. 

Now the pendulum has swung to the other direction. '+Je 
know all about SU(n). '+Je begin with n basic building blocks and 
define unitary transformation among these objects to make an 
su(n) symmetry. Now that something beyond SU(3) is needed, 
theorists play the same games with SU(n) instead of rotations: 
SU(J+), SU(5), SU(~) and so on. If we keep it up, we will get to 
SU(ROSBNFEID) where n is the number of entries in the Rosenfeld 
table of particles and all particles are classified in the 
fundamental representation. 

This reminds me of an explanation I heard from a 
physicist who works in the field of controlled thermonuclear 
reactions about the difference between CTR and particle 
accelerators. The particle physicist builds an accelerator. It 
works and he is happy and does some physics with it. After-a 
while he realizes that to progress further he needs a bigger 
accelerator. He gets money to build it, builds it, it works and 
he is happy and does some physics. After a while he realizes that 
he needs an even bigger accelerator, etc. etc. The CTR man builds 
a machine which does not work and he is unhappy. Then he decides 
that if he had more money he could build a bigger machine that 
might work. He gets the money, builds it, it does not work and 
he is unhappy. He then decides again that if he had more money he 
could build a bigger machine which might work etc. etc. 
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The quark model14 started with the idea that everything 
is made from three fundamental building blocks. The experimental- 
ists looked for the quarks and did not find them. So the theorists 
said maybe there are more quarks. It started from three, it has 
gone up to four, nine, twelve, etc. The current popular colored 
six-quark model has 18 quarks. But still nobody is finding them. 
So, perhaps what we need is not to keep adding more of the things 
that we know, maybe we need to learn something new. In other 
words, maybe the quark is something like three-dimensional 
isospace, a useful realization of the symmetry at a certain stage 
which enables us to do calculations very nicely. But it freezes 
our intuition in the wrong direction and thus hides the new things 
that we may have to learn to advance to the next stage. 

IV. TflE PRESENT STATUS OF TEIE NEW PARTICLES AND THE OZI RULE 

Let me now briefly review the status of the new 
particles. !Fney are narrow resonances discovered at SLAC as peaks 
in the cross section for e+ - e- annihilation into hadrons and at 
Brookhaven as peaks in the mass spectrum of e' - e- pairs in 
nucleon-nucleon collisions produced with hadrons. In the SLAC 
experiment the mass of the $ is about 3000 MeV, the instrumental 
resolution is about 1 MeV, and the width of the & is even smaller. 
The peak is already smeared by the instrumental resolution by an 
order of magnitude, and would be smeared further by magnet drift 
unless the magnetic field is kept stable to better than 1 part in 
3000. Such a narrow resonance was not expected by theory and there 
is no point in getting that much stability in all the apparatus if 
it is not needed. So the particles were discovered by accident. 
The first J or $ that was discovered had a mass of 3100, the same 
quantum numbers as the photon (spin 1, odd parity and odd charge 
conjugation), and decays into hadrons. Soon afterwards, a whole 
family of particles were found having the same quantum numbers as 
the photon. This does not mean that most of the new particles 
have the same quantum numbers as the photon; it ;s just that an 
e+ - e- colliding beam experiment excites most strongly those 
states having the same quantum numbers as the photon. 

Once these are found one asks what they might be; 
something completely new, a new kind of weak or semi-weak boson, 
a new kind of quark-antiquark pair, having a new quantum number 
like charm, or some hadron with a new internal degree of freedom. 
With too many possibilities and not enough experimental data, we 
can try to look for general properties and draw conclusions which 
are not too model dependent. It seems fairly clear that the 
production is electromagnetic, because it all fits together with 
what is known of electromagnetic production via a single virtual 
photon. The particles have the quantum numbers of the photon- 
if they are produced by some other mechanism there is no reason 
to pick out l- states in particular. 
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The most peculiar property of these particles is the 
inconsistency between their production and decay. They are 
produced electromagnetically by e+ - e- collisions presumably 
through a photon, and vith a production cross section comparable 
to that for the ordinary vector mesons P, w and 4. But they 
decay into hadrons vith a very narrow width. The characteristic 
widths for vector mesons are 100 MeV for strong decays like P -+ Sn 
and 1 MeV for electrcrragnetic decays like ul -) no. This is 
consistent vith the picture that 100 MeV is a strong width, and 
electromagnetic widths are first order in u and down by a factor 
of 100. Tne J/$ decay into hadrons is of the order of 100 
kilovolts while decays into hadrons fr are very small. Thus both 
hadronic and electromagnetic decays are down at least three orders 
of magnitude from the expected decays of an ordinary hadron. 

Relatively large electromagnetic production and suppressed 
decays into hadrons suggest that the J/m might not be a hadron at 
all, but a composite state of some new kind of fermion-antifermion 
pair, coupled to the photon because it has electric charge, but 
not coupled to hadrons. That does not work either, because the 
coupling to hadrons is actually too strong. This coupling is 
conveniently measured by a quantity called R defined by the 
relation15 

R= U(e+e- -+ hadrons) 

' U(e+e- -) Ll*!J-) 
(4.1) 

Production of Ll%l- pairs is known from quantum electrodynamics and 
experiments agree with QED predictions. Thus the ~1%~ cross 
section provides the scale for measuring other processes. In 
par-bon models where hadron production occurs via the production of 
an intermediate state of a quark-antiquark pair by the virtual 
photon, the ratio R depends on thTgnumber of different kinds of 
quarks and their electric charges 

R= TQ, (4.2) 
i 

where Qi is the charge of the quark of type i and the sum is over 
all types of quarks. Experiments show that R in the vicinity of 
the J/G but off resonance is of the order of two to five, but 
inside the resonance it rises to 25. 

The J/6 is produced electromagnetically with a strength 
comparable to the P, ;u or 6. It is more strongly coupled than the 
photon to the hadrons but decays much more slowly than it should. 
So in some sense its coupling to hadrons is too small but it is 
also too big. 
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I conclude this review with a more detailed picture of 
why this narrowness problem is such a nuisance. There are t-A-0 
problems. The widths for both electromagnetic and strong decays 
are too narrolJ. !:!e first consider the electromagnetic nroblcz. 
The paradox is that no simple selection rule can forbid the 
decay of J/q into something else plus a photon. Any selection 
rule based on a conservation law that forbids electromagnetic 
decay also forbids electromagnetic production. We know that in 
.+ - e- annilihation both the J/b and W are produced with 
comparable cross sections. Thus the transition matrix elements 
for the two processes are comparable 

(@lJem10 >w< UJIJem\O) (4.3) 

where J denotes the electromagnetic current. Thus the J/$ 
cannot em have a peculiar eignevalue of a new quantum number, 
which is conserved in electromagnetic interactions, Therefore, ve 
cannot forbid by symmetry the decay of a J/h to a photon and some 
hadron states haying the same quantum numbers as the vacuu! for all 
conserved quantities. Since 3100 MeV can make many pions there 
are many such states. But experimentally we know that the sum of 
the squares of these matrix elements over all possible states is 
still very much smaller than the squared matrix element for the 
UJ -) ITY decay. That is the electromagnetic trouble. 

For the strong decays, a selection rule is possible. 
There are "generalized color models", wit 
all ordinary hadrons are color singlets.1 1: 

color symmetry in which 
1l7 If the ti is not a 

color singlet, its decay into ordinary singlet hadrons is 
forbidden, but the photon can excite it because the photon need 
not be a color singlet. But in all such models the electrorzagnetic 
trouble is still there because the iir is allowed to decay into 
color singlet hadrons plus a photon. Thus generalized color 
models solve the strong decay trouble but cannot explain the 
electromagnetic trouble. 

There is a dynamical selection rule which may be 
relevant known as the Okubo-Zweig-Iizuka rule. We know from 
ordinary hadron physics that the + -+ PH and f' -( 2rr decays are 
suppressed. The initial states of both decays contain a strange 
quark-antiquark pair and the final states contain no strange 
quarks. Some dynamical principle suppresses the transition in 
which a strange quark-antiquark pair annihilates and only 
nonstrange quarks are produced. This suggests that if the ti is a 
new kind of quark-antiquark pair like a charmed pair there might 
be a similar principle preventing a charmed pair from 
disappearing. But this selection rule can only hold in Born 
approximation. It cannot be rigorous in higher order because a 
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succession of transitions which satisfy the selection rule can 
produce a forbidden transition. For example both the rh which 
consists only of strange quarks and the ?L! ;Jhich consists only of 
nonstrange quarks are coupled to the I@? state. So-the + can go 
to a nonstrange final state via the internediate KK and w states. 

Thus the basic question of why tne new particles are so 
narrow is still not understood. There are all kinds of hand 
waving explanations that may be right but are still unconvincing. 
It may very well be that the real structwe in the new particles 
is completely different from anything that is being considered 
today. 

v. TFIE oUJBO-ZwEIG-IIZuKA RULE 

One of the principal open problems in trying to under- 
stand the old as well as the new particles is the Zweig rule, or 
the Okubo-Zveig-Iizuka rule, as it is now co only called. The 
Okubo ansats,3 which antedated not only Zveig and Iizuka5 but "r: 
even the quark model, applied to nonet couplings and gave all 
results for the three-meson vertex later obtained by Zweig and 
Iizuka from quark diagrams. The quark-line rules of Zweig and 
Iizuka define one possible generalization of the Okubo ansats for 
four-point functions and more complicated vertices, but this 
generalization is not uni 

18 
ue. Okubo has pointed out other 

possible generalizations that may be relevant to experiment. 
Previous papers have separated the "cookbook rules" of Zweig and 
Iisuka and the Okubo ansatz, since the validity of the Okubo 
ansats for three-meson couplings is experizentally well establish- 
ed, whereas the particular ZI generalization to more complicated 
vertices has not yet been conclusively tested. These notes follow 
the present common usage of giving Okubo proper credit for his 
pioneering work by using the name OZI rule. This leaves some 
ambiguity in its definition for four-point and higher couplings as 
discussed in detail below. 

5.1. Fedagogical Examples and Some Basic Questions 

The OZI rule has entered the folklore of particle 
physics without any clear theoretical understanding or justification. 
At the present time nobody really understands it, and anyone who 
claims to should not be believed. Investigating the OZI rule for 
the old particles raises many interesting questions19T20 which may 
lead to a better understanding of strong interactions as well as 
giving additional insight into the experimentally observed 
suppression of new particle decays attributed to the OZI rule. we 
follow an iconoclastic approach emphasizing embarrassing questions 
with no simple answers which might lead to fruitful lines of 
investigation. 
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The cost common applications of the OZI rule are selection 
rules forbiddln~ the couplings of the + and f' mesons to nonstranee 
mesons and nucleons 

&l-l = %Jruprr 

gf Qml ‘x gfmr 

%I$$ << %iLu 

%-NF~ = gNfNf 

(5.la) 

(5.lb) 

(5.lc) 

(5.ld) 

where the couplings on the left-hand sides of the inequalities are 
forbidden and those on the right-hand side are ailowed. Since the 
selection rule is not exact, the degree of suppression is 
expressed quantitatively by comparing the corresponding forbidden 
and allowed couplings appearing in these inequalities. 

The selection rules can also be formulated in terms of 
two-body reaction cross sections, 

U(rr-p + 4") << U(rp -+ Uln) (5.le) 

u(rr-p) -) f'") -=z< o("-p -+ fn) . (5.1f 1 

Although these agree very well with experiment, no 
consistent theoretical or phenomenological model explains them 
without raising paradoxes and contradictions. There is also no 
theoretical indication of how good the selection rule should be in 
different processes; i.e. no description of the breaking mechanism. 

A principal difficulty to be overcome in any theoretical 
formulation is that a succession of transitions all allowed by the 
OZI rule can lead to one which is forbidden. For example, all 
forbidden couplings (5.1) can proceed through an intermediate E 
state via the following transition amplitudes observed experi- 
mentally and alloved by the 021 rule. 

T(+ -) Id?) f 0 (5.*=) 

T(f' + m f 0 (5.2b) 

T(fi -+ Cm) f 0 (5.2~) 

T(I6t + m) f 0 (5.*d) 

T(E + N%) & 0 . (5.*e) 
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All the selection rules can thus be broken by the 
following allowed higher-order transitions 

rn+E+, (5.3a) 

f’-+E-+mr (5.3b5b) 

+-tE’* (5.3c) 

f'-+67'NTj. (5.3d) 

If the OZI rule holds only to first order in strong 
interactions, much greater violations are expected than those 
experimentally observed. Some mechanism for reducing these 
violations seems to be present. One possibility is a cancellation 
of the violating amplitudes (5.3) by other amplitudes, as occurs 
in the case of symmetry selection rules. This is described in 
detail below. 

The essential features of many problems arising in 
applications of the 021 rule are illustrated in the following 
examples. 

Consider the decays of vector mesons into two pseudo- 
scalar mesons. The following decays are all allowed by the OZI 
rule and observed experimentally. 

r(o + 3) ,f 0 

rcIc* + Fm) f 0 

I-(+ -) 

The decay 

lye + 

is forbidden by 

(5.48) 

(5.4b) 

E) f 0 . (5.4c) 

a) EJ 0 (5.b) 

the 021 rule and. experiments are consistent with 
zero decay rate. 
021 rule. 

Thus, the V'PP decays (5.4) all agree with the 

But the decay 

T(w -+ rn) FJ 0 (5.4e) 

is allowed by the OZI rule and is also observed experimentally to 
be very weak. 
that the decays 

This apparent contradiction is resolved by noting 
(5.4d) and (5.4e) are forbidden by G parity. The 

021 rule is thus completely irrelevant to VPP decays. A similar 
situation obtains for tensor-vector-pseudoscalar decays, irhere the 
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f' -) On decay forbidden by the OZI rule is also forbidden by 
G parity. 

This example shows that experimentally-observed 
suppression of a transition forbidden by the OZI rule does not 
necessarily provide evidence for the validity of the rule. The 
transitions may be forbidden for other reasons. 

The VPP example also raises two questions with interesting 
implications for the general case. 

1. The Doubly Forbidden Question . Since both the 
W -) 2n and e + m decays are forbidden by G parity but the 0 + 2n 
decay is also forbidden by OZI rule, is the doubly forbidden 
4 + a decay weaker than the W -) m decay? 

2. The Higher Order Paradox. The scattering amplitude 
T(K'K- + n'n-) is allowed by both G parity and the OZI rule. TilUS 
the o + SIT decay could take place as a two-step transition in which 
both steps are allowed 

+ -+ K+K- -+ r;crr- . (5.5a) 

How is this transition inhibited in a theory of strong 
interactions where there is no small parameter to make second- 
order transitions weaker than first order? 

The answers to these questions are simple in this trivial 
case and very illuminating for more interesting non-trivial cases. 

1. Double Forbiddeness. There is no simple answer to 
this question. A transition already otherwise forbidden can be 
additionally suppressed by the OZI rule only if the dynamical 
process which breaks the other selection rule also respects the 
021 rule. In the case of the VPP decays the G-parity selection 
rule is broken by electromagnetic transitions which violate the 
XI rule. The OZI violating transition 

++7-+a (5.b) 

and the OZI conserving transition 

w+y-+zn (5.4e) 

have couplings of the same order of magnitude. The OZI conserving 
transition (5.4e) may be favored by kinematic factors if the 7 -* 2s 
transition is dominated by the P pole, but this has no simple 
connection to the OZI rule. 
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2. The Higher-Orarr Paradox. The answer is that the 
allowed transition 5.5, is exactly/ cancelled by the transition 

b -, K-p -t T+iT- . (5.%b) 

This cancellation is characteristic of transitions 
rigorously forbidden by a conservation law. The conservation law, 
in this case G consecration, must hold to all orders. G-violating 
contributions to the transition amplitude can arise from particular 
intermediate states which are not eigenstates of G. These 
contributions must be cancelled by other contributions in the sum 
over all intermediate states related to these states by the G 
transformation. 

Note that this cancellation (5.5) does nut occur in the 
non-trivial selection rules (5.1) allowed by G parity. The 
contributions to the higher-order transitions (5.3) from the 
KY and K?? intermediate states have the same phase and cannot 
cancel. Thus, any cancellation must come from some other state. 

An instructive example of a symmetry selection rule 
broken in higher order is the S&3) and charge conjugation selection 
rule forbidding the transition 

f 
e + e- -'74K"+!?. (5.6) 

However, this reaction is observed experimentally near the mass of 
the ", 

+ e + e- -'7+'m-+K'+K. a 
(5.7a) 

All the individual transitions are allowed by charge conjugation 
and SU(3). If charge conjugation and SU(3) are exact symmetries 
this contribution (5.7.a) to the amplitude (5.6) must be cancelled 
by other contributions. In the W(3) limit the o and W are 
degenerate with the $ and the amplitude for the reaction (5.7a) is 
exactly cancelled by the amplitudes for the reactions 

+ 
e +e--+7+P"+KC+K T 

(5.7b) 
+ 

e + e- a +7+W-+K'+K. (5.7c) 

In the real vorld the 0, W and &J are not degenerate and no such 
cancellation occurs at the * peak. The W(3)-violating reaction 
(5.6)thus occurs just as strongly as the corresponding W(3) 
conserring transition to the K%- final state. 
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The implications of these examples for the CYZI rule are 
clear. Higher-order OZI violations can be suppressed by cancell- 
ations from different immediate states. B1;t such cancellations 
require a degeneracy of the relevant interzeiiate states. l;!ithout 
exact degeneracy the OZI rule will be broken like the SU(3) 
selection rule forbidding the transition (~~6). But no physical 
state is degenerate with the KX intermediate state occurring in the 
transitions (5.3). 
approximate. 

Thus these cancellatiors can at best be only 

We now pose a number of interesting questions which have 
no simple answers tcday.*O 

1. What is the theoretical basis of the OZI rule? Can 
it be formulated with predictive power to give strengths of 
forbidden transitions at least on the phenoaenological level? 
Could there be a description analogous to the Cabibbo description 
of strangeness violation in weak interactions where one or more 
parameters analogous to Cabibbo angles describe the relative 
strengths of OZI-conserving and OZI-violating transitions? 

2. What is the experimental evidence for the OZI rule? 
How many of the so-called OZI selection rules also follow from 
other considerations like G-parity conservation and therefore do 
not really test the OZI rule? How much unprocessed or easily- 
available data could be used to test the OZI rule? 

like N(3)?' 
Can the OZI rule be exact in some symmetry limit 

Can it be formulated as a conservation law? 

4. How is the rule broken and by how much? Can the rule 
be kept exact for vertices with all the breaking introduced in 
properties of external particles and propagators for virtual states, 
as in the conventional SU(3) phenomenology? 

5. Where does the rule apply? To baryons as well as 
wesons? To the not ideally mixed pseudoscalar nonet as well as 
ideally mixed nonets? To the new as well as the old particles? 
Is it better in some cases and worse in others? How is it 
formulated for multiparticle vertices? 

6. What is the relation of the OZI rule to ideally 
mixed nonets? Can the breaking be described as entirely due to 
deviations from ideal mixing? This would allow the deviation angle 
to play the role of a Cabibbo angle in a phenomenological 
description with symmetric vertices and breaking only in mixing 
angles for physical particles. 
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7. A cascade of OZI-allowed transitions can pr-duce a 
forbidden transition. How are these higher-order transitions 
suppressed? 

8. How are the large suppression factors observed in 
the new particles explained? If they are entirely due to the OZI 
rule then the breaking must be much smaller than SU(3) breaking. 

9. Are thresholds important? Nigher-order transitions 
which violate the OZI rule are possible for the o and f' decays 
via the physical P? state with both kaons on shell. "out no such 
physical states exist for the @ and 5' decays, which are below the 
threshold of the analogous DE state. Will the OZI rule be better 
for the $' and ti' which cannot proceed by a cascade of allowed 
on-mass-shell transitions than it is for the old particles or the 
higher G's above the DE threshold? 

5.2. Symmetry, Dynamics, Mixing and the Kl-K2 Analogy 

There are two possible approaches to explaining the OZI 
selection rules (5.1), symmetry and dynamics. All these rules 
apply to processes involving mixed meson nonets, where the SU(3) 
breaking and mixing of singlet and octet states plays a crucial 
role. When the couplings and amplitudes for the processes (5.1) 
are expressed in terms of the unbroken W(3) singlet and octet 
states, the two corresponding quantities are of the same order of 
magnitude and nothing vanishes. 

gwlon f O TJ %Jaim 

gfl_" 
{Of 

gfp 
(5.h) 

%f 4 0 k 
1 

Pef 
a 

(5.8~) 

N~p-+yn) f 0 f +-Pp) (5.8e) 

$~-p-+fln) i 0 f +-p-+f n) a . (5.8f) 

Thus the selection rules (5.1) apparently arise from a 
mysterious mixing mechanism which chooses the physical states to 
be just the right linear combinations of the SJ(3) singlet and 
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octet eigenstates so that the singlet and octet contributions to 
the processes (5.1) exactly cancel for one of the physical states. 
There must be a better way to understand this. 

Each cancellation of singlet-octet contributions required 
for the selection rule depends unon two parameters not constrained 
by W(3): (1) the ratio of the singlet and octet couplings, (2) 
the mixing angle of the meson nonet which determines the ratio of 
singlet to octet in the physical meson. These two parameters 
appear very different in character. A specific ratio of singlet- 
to-octet couplings suggests a higher symmetry beyondSU(3) which 
relates amplitudes unrelated by W(3). A mixing of singlet and 
octet states to give physical states having different masses 
requires SU( 3) breaking. 

In the symmetry approach one looks for a higher symmetry 
which classifies the full nonet of mesons in a single supermulti- 
plet and describes singlet and octet couplings by a single 
coupling. The mixing angles of the physical states could have a 
simple description if the symmetry-breaking mechanism breaks SU(3) 
but conserves another subgroup of the higher symmetry which does 
not commute with SU(3) and mixes SU(3) eigenstates. This other 
subgroup would then predict new conservation laws not found in 

~(6) description& 
SW(S) and could g ve the selection rules (5.1). One example is an 

which breaks both SW(G) and W(3) while con- 
serving the subgroup SU(4 
have all had troubles.14, 2 * 

x SU(2). But such symmetry approaches 
The basic difficulty is that a 

conservation law rigorously forbidding the transitions (5.1) must 
either forbid the higher order transitions (5.3) or cancel them 
exactly with other transitions. They cannot be forbidden without 
also forbidding some of the experimentally observed amplitudes 
(5.2). They cannot be cancelled exactly witho,ut introducing 
additional channels whose intermediate states are exact1.y degenerate 
with the kaon pair states, and such degeneracies do not exist. 

The dynamical approach looks for dynamical models which 
naturally give the mixing that decouples one eigenstate. 

The neutral kaon system provides an instructive analog 
for describing the mixing and s.election rule problem and illustrates 
both the symmetry and dynamical approaches. 
eigenstates K" and v of a symmetry, 

:ie begin with the 
strangeness, that is broken 

in the decay process. Symmetry breaking determines new eigenstates 
which are linear combinations of the strangeness eigenstates and 
could be described by a mixing angle 

- IKAJ = IK") cos 13 + IK') sin 8 (5.1oa) 
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IKB' = -!K") sin 8 + IK") cos 0 . (5.1cJb) 

Both the K" and ??o 
channel. 

states are coupled to the 2;: decay 
Cons!.der the particular value of the mixing ankle defined 

by the relation 

(5.11) 

Then we can write 

(2nlTIK') = T CCJS 6 ('i.12a) 

(2rr/T@ = T sin 0 (5.X%) 

where T is defined by the relation 

T z {i(2n/T(K0\\2 + 1(2n1T512 > 1'2. (5.12~) 

Substituting Eqs. (5.10) into Eqs. (5.12) we obtain the transition 
matrix elements for the 2n decay in the K 

A'5 basis 

(2nlTlKAl = T (5.13a) 

(2nlTiKg) = 0 . (?.lSb) 

a 

mode, 
Thus if both the K" and K are coupled to the 2n decay 

a mixing angle can always be found rrhich decouples one 
state from the 2n system. The physical gixing angle is chosen by 
diagonalization of the mass matrix. If experimentally one of the 
two kaon eigenstates is decoupled from the 2rr system, one can turn 
the question around. Instead of asking why one of the eiqenstates 
is decoupled from the 2n system one can ask why diagonalizing the 
mass matrix chooses the particular state decoupled from the 2n 
system to be an eigenstate, or why nature chooses the mixing 
angle given by Eq. (5.11). Ve examine two possible answers to 
this question, one based on symmetry and one based on dynamics. 

1. symmetry. If an additional symmetry remains 
unbroken it can give rise to the selection rule. For example, if 
CP is conserved in the kaon decays, then the eigenstates of the 
mass matrix must be eigenstates of CP and the mixing angle R must 
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be eaual to C!15'. Since the 2'n state is an eigenstote 
2n decay is forbidSen by CP conservation for the 1 kaon 

of CP the 

eigenstate of CP with the wrong eigenvalue. 

2. Dynamics. If the symmetry is broken by the decay 
itself and there is no other slflmetri breaking, the decoupling is 
automatic. .;ssw~e, for exalrple, that only the K -) 271 coupling 
breaks strangeness conservation. Then all breaking and mixing 
come from the loop diagram shown in Fig. 5.la. The mass matrix is 
a 2 y 2 matrix vhose elements are given by computing this loop 
diagram. But Eqs. (5.13) show that the loop diagram is diagonal 

basist where all matrix elements vanish except the 
element for the state KA. 

Thus we see that two completely independent mechanisms 
naturally decouple one of the eigenstates of the neutral kaon 
system from the 2~ decay node. If the conditions required for 
either mechanism hold exactly the decay of one neutral kaon state 
into two pions is forbidden. In the real world, both conditions 
are very good. approximations but not exact. CP is conserved to a 
good approxication, but is still violated. The 2x decay mode is 
the dominant strangness-violating decay mode of the neutral kaon 
system but it is not the only decay mode. Additional loop 
diagrams involving other states contribute to the mass matrix. 
Thus, both conditions are sligh~tly violated and the neutral kaon 
system contains a long-lived state which decays weakly into two 
pions. 

5.3 A Dynamical Model for Selection Rules at the SU(3) Level 

The first attempt to explain the selection rule (5.la) 
took the point of view23 of the Kl-K2 analog and searched for a 
dynamical sym?letry breaking mechanism which naturally chose the 
decoupled state as an eigenstate of the mass matrix. The approach 
begins in the nonet symmetry limit where all nine states of the 
vector or tensor nonet are degenerate and breaks the symmetry by 
coupling to decay channels. This removes the degeneracy and mixes 
the two states via transitions through decay cha7nels as shown by 
the loop diagrams of Fig. 5.1. If a single loop diagram gives the 

Fig. 5.1. Loop diagrams. 
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only contribution to the symmetT; breakin the dXagonalization of 
the mass rratrix is trivial and leaves one of tha two ei;enstates 
decoupled from that decay channel. ThUS , just 2s the %P is 
decoupled from the 2;: channel the o and f' are decouples from the 
Pn and II~ channels if these are the only decay modes. The presence 
of other decay modes complicates the diagonalizetlon bit their 
effect is small if a single mode is dominant as in the case of the 
217 mode in K" decay. The dominant decay mode then remains 
decoupled from one of the two eigenstates to a very good 
approximation. 

For the 6 and f' decays the final states in-solving the 
other members of the pseudoscalar and vector octets must be 
considered together with the Pn and xii modes. However, in the 
SU(3) symmetry limit these loop diagrams conserve W(3) and cannot 
mix singlet and octet states. Plixing can arise only from 
symmetry breaking. The conventional description of symmetry 
breaking assumes that the vertices in loop diagrams satisfy SU(3) 
symmetry and breaks W(3) by using physical non-degenerate masses 
for particles in the propagators. Because the dominant breaking 
effect in the masses is the low mass of the pion relative to the 
K and tl, the dominant symmetry breaking effects in the loop 
diagrams come from the Pfi and IW channels. Thus, a dynamical 
model in which the symmetry is broken by loop diagrams gives the 
meson selection rules (5.la) and (5.lb). The particular model 
considered for the vector mesons gave a natural suppression of the 
'?J -) Pn decay and a mass formula which fit the vector meson masses. 

The loop diagram model does not give the baryon selectio? 
rules (5.1~) and (5.N) in any simple way. It also gives no 
indication why the particular linear combinations of singlet and 
Octet states which satisfy the selection rules (5.la) and (5.lb) 
should also happen to satisfy the baryon coupling selection rules 
(5.1~) and (5.ld). Furthermore although the mass formula obtained 
gave a non-trivial fit to the data, the very simple experimental 
mass spectzum with P-U, and f-A2 degeneracy and equal C - K* - 4 
and A2 - K - f' spacings is not obtained naturally in this model 
and is fit by adjusting a free parameter. Thus, desuite its 
initial promise the loop diagram model does not provide a 
sltisfactory description of the selection rules. 

5.4 The Quark Line Selection Rules 

A crucial mystery at the SU(3) level is the difference 
between the meson couplings (5.la) and (5.lb) and the baryon 
couplings (5.1~) and (5.ld). ?)aryon selection rules ha-ring the 
same SU(3) couplings as the meson selection rules (5.la) and (5.lb) 
would decouple the 7 rather than the nucleon from the * and f', 
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since the x and r both have zero hypercharge and OCCU~J corres- 
ponding positions in the baryon ancl meson octets. The simple 
unified statemen-c of the selection rules (5.1) is in terms of 
strangeness, rather than h.percharge. 
at the W(3) level, 

But hypercharge is simple 
while strangeness is not, since it deoends on 

baryon number which is outside W(3). 

In the quark model the meson and baryon octets are very 
different because mesons are quark-antiquark pairs while baryons 
are three-quark states, 
arise naturally. 

and the very different SU(3) couplings 
There does not seem to be any simple description 

of the banon selection rules (5.1~) and (5.ld) without invoking a 
quark-like structure for the baryons in which they are composed of 
three fundamental SU(3)triplets. The Zweig-Iiztia formulation 
with quark diagrams provides a simple unified description of the 
meson vertex selection rules (5.la) and (5.lb), the baryon vertex 
selection rules (5.1~) and (5.ld), the choice as eigenstates of 
the mass matrix of just those particular linear combinations of 
singlet and octet which satisfy the selection rules, and the 
simple nonet mass spectrum. 

The quark picture begins with a degenerate meson nonet 
and breaks the nonet degeneracy by a mass difference between 
strange and nonstrange quarks. 
mixing" 

This gives the so-called "ideal 
which chooses as eigenstates those mixtures of singlet and 

octet states corresponding to a pure strange quark-antiquark pair 
and a pure nonstrange quark-antiquark pair, and gives a simple 
mass formula with a mass splitting proportional to the number of 
strange quarks. The selection rule is simply stated by draving 
quark line diagrams for the three-point vertex functions as in 
Figs. 5.2 and postulating that only the connected diagrams Fig. 5.2a 
and Fig. 5.2~ are allowed while the disconnected diagrams 
Figs. 5.2b and Fig. 5.2d,are forbidden. All the couplings (5.1) 
are forbidden since the e and f' both consist only of strange 
quarks while the remaining particles consist only of nonstrange 
quarks. Since the quantum numbers of the quark remain the same 
on a given line, the strange quark lines begin and end on the 
+ or f' and are completely disconnected from the nonstrange 
lines. Thus, the couplings (5.1) are described by forbidden 

quark 

diagrams, Figs. 5.2b and 5.2d. 

and 
However, exactly the same meson select'on rules (5 la) 

(5.lb) are dbtainable from other approaches li,l9,20 with&t 
invoking connected and disconnected quark diagrams. A mathemati- 
cally equivalent description for the three-meson coupling was first 
proposed by Okubo as a nonet 
rule was obtained by Alexander et al. 
approach25 in which any hadron transition involves a change in the 
state of only one active quark in the hadron while the remaining 
quarks are spectators. If pion emission is described as a single 
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a. Allowed b. Forbidden 

C. Allowed d. Forbidden 

Fig. 5.2. Quark diagrams for three-point functions. 

quark transition only nonstrange quarks can emit pions and 
conserve isospin. Thus, a state like the m or f' which contains 
only strange quarks cannot decay by pion emission. This argument 
can be stated more prec'sely in the language of PCAC and the 
Melosh transformation. 2t; The PCAC prescription relates the 
amplitude for a pionic decay %o the matrix elements of the axial 
charge operator 45 between the initial state and the final state 
remaining arter pion emission. The Melosh prescription postulates 
that Q5 is a single quark operhtor. Since a single quark operator 
cannot change a strange quark-antiquark pair into a nonstrange 
pair, 

(+'1Q5/O) = 0 (5.1.4a) 

(fTiQ51d = 0 . (5.14b) 

The PCAC prescription then gives the selection rules (5.la) and (5.lb). 
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None of these alternative approaches for the meson 

selection rules (5.la) and (5.lb) ax-e applicable to the baryon 
selection rules (5.1~) and (5.ld). T!w baryon couplings are much 
more complicated than meson couplings at the phenomenological 
SU(3) level. The octet three-meson coupling is constrained by 
charge conjugation to he pure F and pure D depending on the charge 
conjugation properties of the mesons. The singlet meson coupling 
is forbidden vhen the octet coupling is pure F. For baryons no 
such restrictions exist. The D/F ratio is a free parameter and the 
singlet coupling is always allowed even if the octet is pure F. 
Furthermore, an additional apin degree of freedom is oresent in 
the baryon coupling. There are two independent couplings corres- 
ponding to helicity flip and nonflip at the baryon vertex. 

For the three meson couplings the OZI rule follows 
automatically from G conservation for those channels where charge 
conjugation invariance requires the antisymmetric F type SU(3) 
coupling. For example, the 
fb + K?? is allowed. 

4 -) xx decay is forbidden while 
For cases like (5.la) and (5.lb) where the 

symmetric D Qype octet coupling is required and the singlet is 
allowed one additional constraint on the couplings is needed to 
obtain the selection rules; namely a particular value for the 
ratio of the singlet octet couplings. The correct value of this 
singlet to octet ratio is naturally obtained from the Okubo- 
Levin-Frankfurt and Melosh approaches. 

For the baryon case, the singlet to octet coupling ratio 
needed to obtain the selection rules (5.1~) and (5.ld) depend upon 
the D/F ratio. These ratios are different for the spin flip and 
nonflip transitions. Thus very complicated constraints on the 
couplings are needed in order to obtain the baryon selection rules. 
The only simple description so far has been the Zweig-Iisuka 
formulation with connected and disconnected quark diagrams. 

The baryon selection rules (5.1~) and (5.ld) thus provide 
the best unambiguous tests of the ZI rule and its breaking. One 
can envision a hierarchy in which the rule holds best when several 
mechanisms reinforce one another. The smallest breaking effects 
would occur in pionic meson transitions where the PCAC derivation 
with eqs. (5.14) still holds while the other mechanisms which give 
rise to the ZI rule in the other cases are broken. me strongest 
breaking effects would occur in the baryon vertex and meson 
vertices not involving pions would lie somewhere between these two 
extremes. 

The extension to more complicated vertices of the quark- 
line selection rules for th ee-point functions is not unique, as has 
been pointed out by Okubo. l& The forbidden diagrams of Figs. 5.2b 
and 5.2d can be characterized either as "disconnected diagrams," 
which allow external particles to be separated without breaking 

98-THY 



quark lines, or as "hairpin diagrams" in which one external meson 
has its tvo lines connected together rather than joining lines to 
other particles. 7'sbidding all disconnected diagrams end 
forbidding all hairpin Siagrams are equivalent for three-point 
functions. bwever, :' or four-point and higher functions there 
are disconnected diagrams which are nut hairpin diagrams> multiply 
disconnected diagrams and diagrams vith more than one hairpin, as 
shown in Fig. 5.5. ,::ithout some fundamental theory for the OZI 
rule it is not clear whether disconnected diagrams which are not 
hairpin diagrams are forbidden just as much as hairpin diagrams, 
and whether multiply disconnected diagrams or multiple hairpin 
diagrams are forbidden more than corresponding single diagrams. 

a. Allowed 

C. Crossed Pomeron diagram 

b. Forbidden 

d. Double hairpin diagram 

e. Forbidden propagator 
Fig. 5.3. Quark diagrams for three-point functions. 
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The four-point function of Fig. 5.3~s is clearly allowed 

and that of Fig. 5.3b is clearly forbidden by any version of the 
OZI rule. But Figs. 5.3~ and 5.3d are ambiguous. The simplest 
example of a disconnected diagram which is not a hairpin diagram 
is shown in Fig. 5.3~ and could describe the process nn + cc, or 
elastic % scattering in the cross channel. The elastic amplitude 
must have a Pomeron contribution, as in %V scattering. This 
"crossed Pomeron diagram" is forbidden in the Zweig-Iizuka 
formalism but is not forbidden if only hairpin diagrams are 
forbidden. 

Double hairpin diagrams like that of Fig. 5.3d can occur 
when chtim and strangeness are both present, because the tvo 
hairpins could describe a strange and a charmed quark-antiquark 
pair. One example of a process described by such a diagram is the 
decay J/G -) '%rn in the charm model for the J/e. In this model all 
decays of the J/$J into normal hadrons are forbidden by the OZI rule 
in any formulation because one hairpin is required for the J/o. 
Whether the wo-hairpin decays are more forbidden or not has been 
questioned. 13 The most recent experimental results on the %rr 
decay mode suggest that such decays are indeed more forbidden,27 
but further data are necessary before any gendral conclusions can 
be drawn. 

One possible approach to the generalization of the 021 
rule to more complicated vertices is to build everything from 
three-point functions which satisfy the OZI rule. Inconsistencies 
arise in this approach because of the higher order paradox in which 
combinations of OZI-allowed transitions can produce an OZI-forbidden 
transition, as in Eqs. (5.3). Th ere is also the question of 
possible OZI violations in the propagators of particles appearing 
as internal lines in the diagrams, as indicated in Fig. 5.3e. 
These points are discussed in detail below, 

5.5 The Higher Order and Unitarity Paradoxes 

We now examine in more detail the violation of the OZI 
rule by the transitions (5.3) in which two OZI-conserving 
amplitudes (5.2) combine to produce an OZI-violating transition. 
All these transitions are from an initial state containing only 
strange quarks to a final state containing only nonstrange quarks 
via the intermediate state of a kaon pair. The kaon plays a 
crucial ambivalent role. 
nonstrange quark, 

Since it contains one strange and one 
it couples equally to strange and nonstrange 

systems and can go either way. A kaon pair state contains one 
strange and one nonstrange quark-antiquark pair. It can therefore 
be created from a strange pair by the creation of a non-strange 
pair or vice versa. The kaon pair state thus links two kinds of 
states between which transitions are forbidden by the OZI rule. 
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The quark diagram Fig. 5.4 for the forbidden transition (5.3) 
illustrates the essential fi;ltures of the paradox. Viewed as a 
single topological diagram it is indeed disconnected and can be 
separated into two disconnected hairpin diagrams. But vhen it is 
separated into tvo individual transitions , each half is connected. 
Connecting the two diagrams together results in a topological 
disconnected diagram because of the twist in the quark and anti- 
quark lines in the kaon intermediate state. 

Fig. 5.4. 021 Violation via twisted diagram 

Thus, to save the 021 rule the connection of allowed 
diagrams by a "twisted propagator" mzst somehow be forbidden. But 
a twisted propagator has physical neaning only if there is additional 
information in a kaon pair state to specify %hich way it is twisted"; 
i.e., whether it originally came from a strange or a nonstrange 
system. Some memory of the origin of the pair is necessary to 
prevent the nonstrange decay of a pair which originated in a strange 
system. But a physical kaon pair state has no such memory. A kaon 
pair produced from a nonstrange system is indistinguishable from a 
pair produced from a strange system. 

The transition (5.3)thus must exist in any consistent 
scheme which incorporates the OZI rule. Saving the rule requires 
additional transitions via other intermediate states which exactly 
cancel these amplitudes. Such cancellations do in fact occur in 
dual resonance models where twists in diagrams denote changes of 
the relative phase of the contributions of such intermediate 
states. But the degeneracy requirement discussed above poses 
difficulties. This is discussed in detail below. 

The same higher order paradox appears in an S-matrix 
formulation as unitarity violation. Consider for example D wave 
ITS and @ scattering in the vicinity of the f' pole treated as a 
system with two coupled channels. The OZI selection rule (5.lb) 
requires the f' to appear as a pole only in the E channel but not 
in the nx channei. But the eigenstates of the 2 X 2 S matrix are 
not the xz and KK states but mixtures of the two, because the 
ITS -) I6?transition amplitude (5.2d) does not vanish. Thus, both 
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eigenstates of the S mat~rix contain a 7:~ component and any pole 
appearing in the S roatrix must have a nonvanishing coupli:.g to the 
TIN channel. Coanlete decounlin_r of a pole from the *IT channel is 
possible oniy :iien the rl[ and h7( channels are completely decoupled 
from one another. 

!&is can be 
equation 

seen explicitly by writing the unitarity 

IdldTInn) = @lT+ki?)(6lTIrrn) 

+ hii?IT+inn)(nnITtnx~ . (5.15) 

Since there are only two channels the unitarity sum has only two 
t ems. If the OZI rule holds and the f' pole is decoupled from 
the xx channel, 
Eq. (5.15), 

the f' pole appears only in a single term in 
namely the first term in the right-hand side. Thus the 

'OZI rule is inconsistent with unitarity in this two-channel model. 

The way out of this paradox is to include more than the 
xx and 6 channeis. Additional channels can introduce new terms 
in the unitarity sum of Eq. (5.15) which can cancel the term with 
the f' pole and enable the decoupling of the f' from the TIN channel 
without violating unitarity. Again the paradox is resolved by 
canceling the transitions via some other set of intermediate states. 

Some symmetry scheme or dynamical model is needed to choose 
which additional intermediate states cancel the JS?? contribution. 
There are several possibilities. SU(3) symmetry suggests that the 
full pseudoscaler octet be included with the additional nn 
intermediate state. Non& symmetry requires the n'n' and nn' 
states as well. SU(6) symmetry suggests that vector and pseudoscalar 
mesons be treated together with the inclusion of intermediate states 
involving vector mesons. Duality and exchange degeneracy suggest 
that the vector and tensor mesons which lie on degenerate 
trajectories must be included together. Exactly how these conflict- 
ing suggestions can be resolved is an open question. 

5.6 A Simple SU(3) Model 

lie now show how the higher order and unitarity paradoxes 
can be resolved in a simple way in the framework of SU(3) 
symmetry by including the nn channel together with the E channel. 
The model is not relevant to the physical particles, but the manner 
in which it avoids the difficulty of the higher order transition 
(5.3b) and the associated problems of the unitarity of the 
S-matrix is instructive. In the nonet symmetry limit there is 
always a particular linear combination of the two isoscalar tensor 
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mesons for which the couplings of the two components to the 2'n 
channel cancel one another Lxactly. We consider a model in which 
a small N(T) symmetry breaking with appropriate properties splits 
the masses and leaves the decoupled states as an eigenstate. 

We denote by fl and f8 the two isoscalar tensor mesons 
classified in the SU(T) symmetry limit in the singlet and octet 
representations. We assume an unmixed octet of pseudoscalar 
mesons. There are three oossible_two-pseudoscalar decay modes for 
these tensor mesons namely, xx, KK and f?n. The branching ratios 
for the fl and f 
uniquely by SU(3 B 

into these three decay modes are determined 
, but the relative strengths of the fl and f8 

couplings are not determined 

Gi (nnlr,) = 4 (nnlfl) = 42 (I%lfl) = $ (5.16a) 

m &lf8) =-45 (nnlfg) =-J5 (Ki?lfg) = &8 (5.16b) 

where 71 and 78 are reduced total widths for the fl and f8 with 
phase space factors removed 

r1 = Ihlfl)l* + l(?mlfl)P + IKKi$)12 

r8 = I&lf8)12 + I(nnlfgN2 + I(@? f*)l2. (5.17b) 

If Y1.f 78' the states fl and f have differed lifetimes 
and cannot be mued, as mixed states woul 9 not have simple 
exponential decays. To allow mixing of fl and f8 in the symmetry 
limit we set their lridths equal 

71 = Y8. (5.18) 

The States fl and f8 are now degenerate and any linear combinations 
can be chosen to give a basis of states with simple exponential 
decays. We choose a basis in which one state is completely 
decoupled from the 2~ channel. From Eqs. (5.16) and (5.18) this 
basis is 

If) = Qlfl) f J$f8) (5.19a) 

If')= qt fl)- GIf,) . (5.1%) 
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We nov assume that the symmetry breaking chooses these 

states as eigenstates oL * the mass matrix for some mysterious 
reason. The partial rridths for'the various decays of these states 
are given by 

Cnxlf) = 439/LO)Y (5.2cB) 

(mif) =-"1(9/520)~ (5.20~) 

(Elf' = "i(lll3O)Y (5.20~) 

(nnlf')= 0 (5.21a) 

(rmIf')= m (5.*=) 

(Kitif')= qqFx (5.21~) 

The state denoted by f' is decoupled from the 2n channel 
by construction. But the mixing angle described by Eqs. (5.1-g) is 
very different from the ideal mixing angle of the quark model. 
Note, however, that Eqs. (5.20) and (5.21) lead to the result 

((35 + 2vl)If) = 0 (5.2*a) 

((26 - 3Tl)lf') = 0 (5.2&b) 

(f~lKFZ)~~lf) + (f'lvl)(nnlf) = 0. (5.23) 

Equation (5.23) shows that the higher order transition 
amplitude (5.3b) is canceled exactly by the analogous transition 
via the VI intermediate state, Equations (5.22a) and (5.2Z?b) show 
that the-f and f' are coupled to two orthogonal linear combinations 
of the KK and nrl channels. The particular linear combination 
(5.2&i) which is decoupled from the f is the eigenstate of the 
S-matrix whose amplitude has the f' pole. This pole does not 
appear in the other eigenstates of the S-matrix, which are 
decoupled from the f', namely, the 271 channel. Thus the selection 
rule (5.la) can be rigorous without difficulties from the higher 
order transitions (5.3) or the unitarity of the S matrix. 

We now consider the conventional quark model formulation 
using ideal mixing and the 021 rule. This case is very different 
from the above SU(3) treatment where the cancellation (5.23) of the 
higher order transition am@itude (5.37~) depends crucially on the 
description of the r as a member of an unmixed octet. No such 
cancellation occurs in the case of an ideally mixed pseudoscalar 
nonet with couplings giyen by the 021 rule. \Je denote the 
pseudoscalar state consisting of a nonstrange quark-antiquark pair 
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by nn and the state of a strange quark-antiquark pair by ns. me 
OZI rule then immediately gives 

(q,n,lf') = (nsnslf) = (nsnnif) = (risnnlf') = 0 (5.24s) 

(nnnnlr) = 42 (v&f9 = G (nnlf) 

= (Elf) = 475 (@?lf') . (5.24b) 

Thus if the coupling of the tensor mesons to the pseudo- 
scalar nonet is described by the OZI rule with ideal mixing, there 
is only one pseudoscalar channel coupled to both f and f', the fi 
channel, and no additional channel is available to cancel the 
transition (5.3b). 

For a more realistic treatment we consider pseudoscalars 
which are not ideally mixed, 

17' = Vn cosep + qs sin0 
P (5.25a) 

rl = -ri, sinep + rls cod 
P (5.25b) 

where BP is the angle of deviation from ideal mixing. 
basis Eqs. (5.h) and (5.24b)become 

In this 

(rlTl'lf) =(vllf) = d(n'nrIf*) = &++f') = 
cos2e side 2 

P 
sin 8 

P 
01X2e 

P P 

= (Tl')7lf')=- (Tl'Vlf) 

sinhose d&ine~os? =$ "' If) 

= (IRlfY = 1 
vb 

(Kzlr*>. (5.26) 

Equations (5.26) give the transition amplitudes for the case where 
the couplings to ideally mixed states satisfy SU(3) symmetry and 
the 021 rule, but the physical pseudoscalar states are not 
ideally mixed. 
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(f~lT?n)(l-allf)= z$J (,I(%) (elf) 

(f'bl'n'xq'q'lf) = 
sid(20 ) 
+ (f~1Ki?)(Kzlf~ (5.rib) 

(5'riC) 

If the result (5.27) is summed over all channels with 
equal weighting the total contribution of n and n' decay modes 
vanishes, as expected from Eq. (5.24a). A finite contribution 
appears under the more realistic assumption that the m channel is 
dominant and others are neglected. Bowever, this contribution has 
the same phase as the contribution from the l+?? intermediate state 
and cannot produce a cancellation. 
the I& contribution. 

It is also much smaller than 

5.7 The Selection Rule in SU(~), Symmetry 

An early derivation of the selection rule forbidding the 
+ + pn decay was based on SU(~)W syametry.6,28 This selection rule 
holds in any model which satisfies SU(~)W. It is therefore of 
interest to examine the higher order transition (3a) and see how 
SU(~)W operates in this case. In ~~(6)Wthe Kn(890) is in the same 
super-multinlet with the kaon, and higher order transitions via all 
possible intermediate states involving one or two ?? mesons must 
also be considered. In the approximation where K and K* are 
degenerate and all vertices are related by SU(~)W the contributions 
from the different K and K" intermediate states all cancel and the 
decay o -) Ofi is still forbidden. This cancellation is simply 
described by a conservation law. In the decay (5.la) the outgoing 
P and the initial m must all be in the same polarization state with 
S, = *l, since angular momentum and parity conservation forbids the 
t;:ansition for the states with S = 0. !Fhe transition from the 
initial state to the intermediatg state of two strange mesons 
conserves separately the total W spins of strange and nonstrange 
quarks. The initial + state has strange W-spin 1 and nonstrange 
W spin zero. Thus each strange meson in the intermediate state is 
a coherent linear superposition of a K and a K* which is an 
eigenstate of the z component of the spin of the strs~nge quark or 
antiquark, with the eigenvalue required to conserve the strange W 
spin. The spin directions of the two strange quarks are parallel. 
Thus, they cannot annihilate and conserve strange quark W spin. 
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The SU(~), selection rule is thus follows simply from the conserva- 
tion of the z component of the strange quark spin. 

However, the transition (5.3a) is forbidden in a much 
simpler way by SU(~),,, which also illustrates a basic weakness in 
SU(~)W, which holds only for colinear Erocesses. In SU(~)W all 
momenta are in the z direction and a KK state must have S 
Thus the S, = 0 p$arization state of the initial m 

z = Jz = 0. 

decays into the KK channel and the S, = 5 state decays into the 
0s channel and angular momentum conservation forbids transitions 

between the two states. But this argument holds for the transition 
(5.3a) only if the momentum of the kaon pair in the intermediate 
state is in the same direction as the momentum of the final on 
state. Consider for example the decay of a @ in the state with 
Sx = 0 into a On final state with momentum in the s direction. The 
transition of a + into an UI via an intermediate k?? state with 
momenta in the x direction is allowed by SU(~)W because the 4 and 
UJ states with S, = 0 are both states with W = 0 with respect to the 
x axis. However, the state of the UJ with S, = 0 is a linear 
combination of states with S, = *lfor which the Pn decay in the 
z direction is allowed. 

The SU(~), argument does not hold for the f' decay, 
because the outgoing pions are spinless and there can be no 
correlation between the quark spins of the final state and the 
quark spins in the initial state. In the decay (5.lb) a 
component in the initial f' wave function has the quark and 
antiquark spins antiparallel, and therefore has W = 0. They are 
allowed to annihilate without any angular momentmtransfer, and 
the transition from the W = 0 comparent of the final two-pion 
state is allowed by SU(~)W. Thus, SU(~), cannot be used to give a 
general derivation of the OZI rule. 

5.8 Ideal Mixing and Symmetry Cancellations 

The peculiar role of ideal mixing and higher symmetries 
in the OZI rule is illustrated by the following example: 

Consider the decay of a high I?- resonance into three 
kaons via an intermediate nonstrange resonance MO 

X- 
K + K-M' -( K-E, (5.28) 

where M" is a resonance like the 0 0 , w, f or A2 which consists only 
of nonstrange quarks. 

There are two quark line diagrams for this decay shown 
in Fig. 5.5, using the pp and nii components of K". The pp diagram 
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is connected, obeys the OZI rule and leads to the final state 
K-K+K-. The n?i diagram is ?.isconnected, violates the OZI rule and 
leads to the final state K-K%. Thus if the OZI rule holds, 

(K* + K-M' + K-K+K-) is allowed (5.29a) 

(K* + K-M' -+ K-K%') is forbidden . (5.2%) 

Y- 
Fig. 5.5s.. Allowed K 

into charged mode. 

Fig. &~gyyn 

neutral mode. 

But if the resonance M" has a definite isospin, the two 
transitions (5.29a) and (5.29b) must be equal by isospin invariance. 
Contradictions between the OZI rule and isospin invariance are 
avoided if the nonstrange meson spectrum consiSts of degenerate 
isospin doublets, like p and W or f and 4.2. In that case the 
transition (5.29a) proceeds via the particular coherent linear 
combination of isovector and isoscalar particles which has the 
quark constitution p?. The OZI rule is thus intimately related to 
the existence of the isospin doublets found in ideally mixed 
nonets. 



-36- FERMILAB- Conf-76/98-THY 
If the 11' in the transitions (5.23) is not a member of an 

isospin doublet, the OZI rule is inconsistent with isospin 
invariance. This is the case if M" is a z", which has no degenerate 
isoscalar partner. Although the no cannot appear as a physical 
resonance in the reactions (5.29) because of its low mass, it can 
appear as an exchanged particle in the analogous two-body 
scattering reactions 

K+ + K- -9 KY0 + $" (5.3ca) 
X- 

K+ + K- -+ K+++ + K (5.3m) 

K" + K- -+ K*' i K*-. (5.3oc) 

The quark diagrams for these reactions are shown in Fig. 5.6 ~ 

+ - K~(y°K$.&” 
K- A iF K-?, X K’ 

a b 

Fig. 5.6. Reactions allowed by pion exchange. 

The charge exchange reaction (5.3Ga) is clearly allowed 
by the OZI rule and can go by pion exchange. The amplitudes for 
the pion exchange contribution to the reactions (5.3Ob) and (5.30~) 
a-e uniquely related to the charge exchange amplitude (5.3Ca) by 
isospin invariance. But the reaction (5.3ob) is allowed by the 
OZI rule and the reaction (5.3Cc) is forbidden when only nonstrange 
quark exchange is considered. (The reaction (5.30~) is allowed by 
hx exchange but this is irrelevant to the present argument). The 
OZI rule could be saved from inconsistency with isospin invariance 
if a contribution from isoscalar exchange degenerate with pion 
exchange cancelled the pion exchange contribution to the reaction 
(5.302). But no such isoscalar exists. Thus violations of the 021 
rule might be expected in processes vhere pseudoscalar exchange 
plays a dominant role. 



-3-i- FERMILAB- conf-76/98-THY 
5.9 Cancellations and Degeneracies in Quark Line Nodels 

Figure 5.7 shows the essential piece of the diaqrax of 
Figses 5.5 and 5.6 which brea!c the OZI rule, a transition i-etijeen 
a pp and nn pair. This diagram exists in the propagator of any 
neutral isovector meson and will lead to OZI breaking unless it is 
cancelled by a contribution from a degenerate isoscalar partner. 
The diagrams of Fig. 5.4 describe the higher order transitions (5.7) 
which violate the 021 rule as the connection of two alloxd 
diagrams by a twisted pair of lines. The essential piece of this 
diagram which breaks the OZI rule is shown in Fig. 5.8. This is a 
transition which interchanges the quark and antiquark lines. 

IF YOU LIKE p,n,X USE THIS SIDE UP 

P 
ij 

dn XIIS SlHl 3Sn S’P‘n 3x11 flOA AI 

Fig. 5.7, OZI-Violating diagram required by isospin. 

Fig. 5.8. OZI-Violating diagram required by charge conjugation. 

The two basic OZI-violating diagrams, Fig. 5.7 and 
Fig. 5.8 have a very similar structure. Figure 5.7 describes: a 
transition between two states related by isospin. It occurs 
naturally in the propagator of any particle which is an isospin 
eigenstate. Figure 5.8 describes a transition which interchanges 
quark and antiquark and occurs naturally in the propagator of any 
particle which is an eigenstate of charge conjlxgation. The OZI 
violation implied by tlz diagram of Fig. 5.7 can be avoided by an 
additional degeneracy of isoscalar and isovector particies. This 
allows the choice of a basis of states which are not isospin 
eigenstates and whose propagators do not include the diagram of 
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Fig. 5.7. Similarly, the OZI violation implied by Fig. 5.8 can be 
avoided by an additional degeneracy of particle states which are 
even and odd under charge conjugation. This allows the choice of 
a basis which are not eigenstates of charge conjugation and whose 
propagators do not include the diagram of Fig. 5.8. For the case 
where the quark and antiquark in Fig. 5.8 do not have the same 
internal symmetry quantum numbers, the relevant transformation is 
not charge conjugation but an appropriate combination like G parity 
of charge conjugation and an internal symmetry transformation. The 
conclusions are the same. 

We can now specify the additional degeneracies essential 
for the validity of the OZI rule in higher order in models described 
by quark line diagrams. The states described by the left-hand and 
right-hand sides of the diagrams of Fig. 5.7 and Fig. 5.8 must be 
physical eigenstates which can propagate unchanged and in particular 
can avoid undergoing transitions indicated by Fig. 5.7 and Fig. 5.8. 
These states are eigenstates of quark number having a well-defined 
quark composition (either pp or nz, but not a linear combination of 
them) and are linear combinations of states even and odd under 
charge conjugation (either pp or pf; but not the linear combination 
of them which is a charge conjugation eigenstate). These states 
required by the OZI rule are not eigenstates of SU(3) and its 
isospin subgroup nor of charge conjugation. 'F&y can be physical 
eigenstates only if additional degeneracies are present beyond 
those imposed by these symmetries. 

There must be ideal mixing of the SU(3) singlet and octet 
states so that the AT state remains an eigenstate and the pp and 
n?i eigenstates which go into one another under isospin transform- 
ations are degenerate. When processes are described in terms of the 
isospin eigenstates as in Fig. 5.5 the amplitude for the forbidden 
diagram vanishes because of a cancellation between the contributions 
involving degenerate isoscalar and isovector states. 

Charge conjugation degenerate doublets are required to 
eliminate the OZI violation due to twisted diagrams like Fig. 5.8. 
In duality and dual resonance models this degeneracy appears in 
Regge trajectories, rather than in individual particle states as 
exchange degeneracy of trajectories having opposite signature. In 
these formulations the two stat,zs on the left-hand and right-hand 
sides of Fig. 5.8 represent two different linear combinations of 
even signature and odd signature trajectories with equal magnitude 
and opposite phase. When the OZI-violating higher-order 
transitions (5.3) are described in the conventional basis using 
states which are eigenstates of charge conjugation the violating 
diagrams cancel one another in pairs involving states which behave 
oppositely under charge conjugation. 
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The pecul-iar relation between ideal mixing, exchange 

degeneracy and the OZI rule was noted in early treatments of 
duality using finite energy sum rules.29 Pro possible mechanisms 
for the breakdwn of the necessary cancellations are immediately 
evident upon closer examination of the diagrams of Fig. 5.7 and 
Fig. 5.8. 

The diagram of Fig. 5.7 will occur and break the OZI rule 
whenever a propagator appears for a state which is not ideally mixed, 
such as a pseudoscalar meson. One can expect the OZI rule to be 
violated in processes where there is a strong co&rib&ion from 
pseudoscalar exchange. 

The cancellation of the diagram of Fig. 5.8 must break 
down because charge conjugation doubling exists only for Regge 
trajectories and not for individual physical states.3O Thus, even 
if exchange degeneracy is exact the OZI-violating diagram of Fig. 
5.8 is cancelled only in the kinematic region where Reggeization 
is a good approximation; i.e., where the scattering amplitude is 
well described by a Eegge exchange rather than by one or two 
resonances.jl This is clearly not the case for the higher-order 
transitions (5.3a) and (5.7~1) where the mass is above the 
threshold for the intermediate K?f? state but below threshold for all 
other states on the kaon trajectory and its exchange degenerate 
partner. In general, one might say that contributions from high 
momentum intermediate states could be described in the Regge 
approximation and the desired cancellations from exchange degenerate 
pairs could occur. But at low momenta, where the large mass 
difference between individual resonances on exchalige degenerate 
trajectories is significant, such cancellations should not be 
expected. 

5.10 Quantitative Estimate of 021 Violation 

Let us now attempt to estimate the violation of the 021 
selection rule (5.lb) resulting from the higher order transition 
(5.3b). We consider the f-f' system analogous to the Kl-K2 .;ystem 
and diagonalize a 2 X 2 mass matrix. We assume that the dominant 
portion of the mass splitting comes not from the loop diagram but 
from a quark mss term. We therefore use the ideally mixed basis 
in which the quark mass term is diagonal. The loop diagram 
contributes both a real part. and an imaginary part to the mass 
matrix. 

The real part is dominated by high momenta. There-is no 
justification for considering only thg contribution of the KK state 
rather than all states on the K and K Regge trajectories. 
Exchange degeneracy and Regge arguments suggest some kind of 
cancellation in these diagrams. But it is very difficult to 
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estimate these cancellations quantitatively. One possibility is to 
consider the entire set of states on Regge trajectories and use 
duality and dual resonance models in order to calculate the 
contributions. Such calculations are beyond the scope of this paper. 

The imaginary part, however, is dominated by the f and f' 
poles. It is therefore reasonable as a first approximation to 
consider only the l% intermediate state and neglect the contributions 
of higher strange meson resonances. Estimates of the imaginary part 
of the mass matrix are obtained by using the experimental partial 
widths for the decays. Fie therefore neglect the real part, which 
we cannot calculate"anyway, and calculate the contribution.of the 
imaginary part to the 021 violation. This gives a lower bound 
since the contribution of the real part cannot cancel that of the 
imaginary part. 

In this formulation the violation of the OZI rule comes 
about as a result of a deviation from ideal mixing produced by the 
loop diagram. The relevant parameter which characterizes the mixing 
is the ratio-of :~-:lf thewidth of the f' to the f-f' mass splitting. 
For r(f' -) KK) 7. -,O MeV and mf, - mf = 240 MeVthis ratio is small 
and consistent vith the small observed violation. This also implies 
that we can treat the deviation from ideal mixing as a first-order 
perturbation. Let us write 

lfl) = cosgf,lf;) + sinef,lfI) 

where the subscript 'I denotes the ideally mixed states and of, is 
the deviation of the f' mixing angle from ideal mixing. This is 
not necessarily equal to the f mixing angle because the eigenstates 
of a complex mass matrix are not necessarily orthogonal. However, 
only gf , is needed to calculate the 021 rule violation. In first- 
order perturbation theory sinof, is given by 

sine 
n(flTI~)(~(Tlf')PF(f') 

f' = *(Mfa - Mf' 
(5.312) 

where PF(f') denotes the density of final I&? states at the mass of 
the f'. This can be expressed in terms of the experimental width 
of the f' and the ratio of f and f' transition matrix elements 

sine r(f' + Ki?) (flT\@?) 
f' = 2(Mf, - Mfj (f ' 
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The amplitude of the OZI violating transition is then given by 

(2rr(Tlf') = sidf, (&/Tlf) : T(f' -) G, 'f~:!f~~~'T'f' . 
2&t- Mf) 

(5.31c) 

To evaluate the expressions (5.31) we introduce the 
W(3) relation between the transition amplitudes 

(2dTif) = 6 (K!?\T/f) = $7-2 (ElTlf'). (5.32) 

We now obtain 

sine 
r(f' -t KF) 

*' = ti(Mf, - Mf) 
(5.33a) 

\%lTlf')!* = z6;;' + ;i,2'(Ki?,T!f')j2 (p,/~k)~ (5.33b) 
f'- f 

where the d-wave phase space factor (p /p )5 is introduced to 
account for the difference between pio?i akd kaon momenta in the 
decay of the f'. Substituting the experimental values 
i-(f' -+ E) = 40 MeV, Mf, = 
Sit-B 

1514 MeV, Mf = 1270 MeV we obtain 
f, = 0.06 and 

[:g;;;:::i’ = 0.005 (P,/P,? = 0.02. (5.34) 

This wsult is in qualitative agreement with experiment. 32 
Obtaining a better aprrroximation is difficult because there are too 
many uncertainties in the additional effects which must be taken 
into account. In addition to the contribution from the real part 
there are additional contributions from channels like 17n, n'n' 
which have large uncertainties because of the deviation from ideal 
mixing. In the limit of ideal mixing these channels give no 
contribution as shown by Eqs. (5.24) since there is no state which 
is coupled both to the f and to the f'. However, the physical 
pseudoscalar mesons are approximately equal mixtures of nn and ns 
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and all three physical states contribute to the transition. The 
three contributions cancel exactly in the nonet symmetry limit 
where 71 and ri' are degenerate and the ratio of the singlet and 
octet couplings is given by the OZI rule. For the physical 
nondegenerate and nonideally mixed states the cancellation no longer 
occurs and the magnitude of the contribution is very sensitive to 
the mixing angle and to possible changes in the singlet to octet 
ratio. Thus, there does not seem to be a serious possibility of 
obtaining a better approximation than Eq. (5.34). 

An alternative approach to including the higher order 
transition (5.3b) is to use an S-matrix formalism and calculate 
unitarity corrections. In the most naive approximation results 
similar to (5.34) are obtained. However, attempts to include more 
channels run into the same difficulties discussed above for the 
rl and rl'. 

Our analysis of the f' -+ RX decay suggests that the 
observed violation of the OZI rule is due to the higher order 
transition via the open I6? channel, and that there is no effective 
mechanism available for cancelling the contribution of this channel. 
The effect is small because it is characterized by a small parameter, 
the ratio of half the width of the f' to the f-f' mass difference. 
Whether the smallness of this parameter has any deep theoretical 
significance is not clear at this point. Two fundamental quantities 
having the dimensions of mass appear in this ratio, the character- 
istic width of strong decays and the mass difference between strange 
and nonstrance particles or between the strange and non&range 
quark. Buth these quantities are generally considered to be of the 
order of 100 MeV and the ratio of the two is then of order unity. 

However, in the particular case of the f' decay there are 
several factors of 2 present which conspire to provide a factor which 
is an order of magnitude. Two factors of 2 arise because the 
relevant parameters are half of the width and twice the energy 
difference between strange and nonstrange quarks. The width of the 
f' is 40 MeV rather than 100 MeV. As long as there is no 
fundamental theory which predicts the ratio of the strangeness mass 
difference to strong decay widths, there can be no explanation for 
why the numerical value of the parameter which characterizes 3ZI 
violations is small in this particular case. 

It is amusing that the selection rule holds both in the 
limit of very small and very large values for this ratio of the 
widths to the mass splitting. In the other extreme case of the large 
value the mixing of the two states is completely dominated by the 
decay process and leads to the decoupling of one state via the 
Kl-K2 mechanism. 
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In intermediate cases, where the mixing is not dominated 

by the decay process the 11 2 < -OK mechanism still has some effect in 
reducing OZI violation from higher-order transitions. In the 
above analysis of mixing produced via the intermediate @? state in 
f' decay contributions from the intermediate rz state were 
neglected. In first order these contributions vanish because the 
unperturbed f' does not couple to the XR channel. This 
approximation is justified in this case by the small magnitude of 
the results (3.31-3.34). But when the mixing is larger and higher 
order effects must be considered the contribution of the -II~ 
intermediate state introduces an effective "restoring force" 
opposing the mixing by the Ki? intermediate state and opposing the 
increased violation of the OZI rule. 

A qualitative estimate of this restoring force effect is 
obtainable by introducing all the two-pseudoscalar meson intermediate 
states into the calculation. We assume that the 2 X 2 mass matrix 
M has the form: 

M=/'m+Ls+Ls (5.35) 

whereAm is a quark mass term diagonal in the ideal mixing basis as 
in the naive mixing model, L, represents the contribution of the 
loop diagram of Fig. 5.1~ but with all octet pseudoscalar mesons 
included in the intermediate state and full SU(3) symmetry, and 
I+ denotes an additional contribution from the xs intermediate 
state resulting from SU(3) symmetry breaking. We do not have 
values for the strengths of these terms from first principles, 
but give each one a strength parameter and see how the OZI rule is 
affected by their variation. In particular, we shall see that the 
I& term indeed has the effect of a restoring force reducing OZI 
violation. 

If L, = Ls = 0, the only contribution to the mass matrix 
comes from Am and gives ideal mixing and the OZI rule. 
but $ is kept zero; i.e. 

If L, f 0 
SU(3) symmetry in the loop diagram, 

there is no longer ideal mixing, and the OZI violating decay 
f' -) xx occurs. However, if hm and L, are fixed and the symmetry 
breaking term L.s is turned on, the 021 violation is reduced by 
this "restoring force". Table j.1 shows values of the OZI 
violation, expressed as the ratio of the forbidden and allowed 
decay rates, r(f' + ss)/(T(f + sn) for different values of Lm and 
L The value of L, is given in arbitrary units, and L, is given 
i:'units of the ~[II contribution to L,; i.e. Ls = 1 means that the 
contributions from the s[x intermediate state in Ls and L, are equal. 
Table 5.1 shows that restoring force effects can be quite 
appreciable. The significant quantity is the change in 
r(fl -+ ss)/(r(f + rrn) with increasing Ls. For example, when the 
loop diagram contribution is sufficiently large to give a 31% 
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violation of the 021 rule the addition of a spmetry breaking fin 
loop of equal magnitude to the W(3) symmetric m contribution 
reduces the violation to 7s. 

Table 5.1 

Effect of Kl - K2 Restoring Force Mechanism 

Values of r(f' -+ r;n)/r(f -( nn) as Functions of Ls and L, 

LL, 0 s l/2 1 3/2 2 

1 .dc .03 .02 0016 .012 

2 .ll .c6 .04 .03 .M 

3 .18 .og .05 .a35 .a 

7 .31 .14 .07 .04 .03 

5.11 Experimental Tests of the OZI Rule 

The 021 rule has been found to be in qualitative 
agreement with experiment for selection rules forbidding the 
production of the @ and f' mesons. 

Two types of further experimental information are needed 
as a guide to theoretical understanding of the underlying 
dynamics: 1) Quantitative results on the magnitude of the OZI- 
violating transitions with systematic comparisons of different 
processes, 2) Tests of the OZI rule for nonets like the pseuco- 
scalar nonet which are not ideally mixed. 

If production of the m and f' from nonstrange systems 
arises primarily from a small admixture of a nonstrange quark- 
antiquark pair into the wave function, as in the example of 
section 5.10, then all OZI-violating transitions will be 
expressible19 in terms of the angle ofI and the analogous angle 
@4J 

(5.36.a) 
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2 2 
- = - = U(nN + f 'X) gf'xn gtifl U(Nwf 'X) 'J(fp-+YYf ' Iback 

2 2 
gfnrr %f 

u IiN + fX ) = 'm = o(K p+Yf)back / = tan2ef 

t5.36b) 

where X denotes any single or multiparticle hadron state which 
contains no strange particles, Y denotes any neutral hyperon or 
hyperon resonance and the subscript back denotes backward neutral 
meson production by baryon exchange. 

If on the other hand, the violation in a given process 
comes from a specific higher order transition appropriate for that 
particular process, the relations (5.36) will not hold. One example 
of such a hi her order transition which has been considered in 
detail is30,g1 

n-p -+ li"OA + 43 (5.37a) 

n-p -) lFOA + LUn . (5.37b) 

The unitarity paradox has been formulated for the box diagrams 
corresponding to these reactions and has been shown to be related 
by W(3) symmetry to the reactions 

K-p + O"A + .+x- (?.%I 

K-p -) O"A -+ n-C+. (5.38b) 

The transition (5.37a) is forbidden by the OZI rule; the 
transition (5.38a) is forbidden in standard models because it 
involves an exotic exchange. Yet both steps in these second-order 
processes are allowed and are simply related respectively to the 
corresponding allowed processes (5.77b) and (5.38b). The relations 
between corresponding allowed and forbidden processes have been 
written as a unitarity sum involving the intermediate states in the 
box diagram 

Im TAB = F TAi TiB (5.,39) 
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where A, B and i denote initial, final and intermediate states for 
any of the reactions (5.37) and (5.38). Note that for any 
intermediate state i, the right-hand sides of Eq. (5.39) are either 
equal for corresponding allowed and forbidden processes or differ 
only by a symmetry coefficient, The paradox is resolved by 
requiring cancel&ions in the unitarity sum for the forbidden 
processes, which are seen in quark-line formations to be represented 
by twisted diagrams analogous to Fig. 5.4. 

Without a detailed mod~el for all possible intermediate 
states, it is impossible to estimate how good the cancellations 
are. However, SU(3) symmetry has been used to relate the tno 
forbidden processes, so that OZI breaking can be predicted with 
experimental data on exotic exchange amplitudes used an input.3O 
Estimates of OZI violation have also been made by this box-diagram 
mechanism for low energies where the lowest mass intermediate state 
can be assumed to be dominant without cancellations from other 
channels. 

Experimental results indicate that in some cases the mixing 
mechanism giving rise to Eqs. (5.36) are valid, vhile in other cases 
the box diagram description (5.37) may hold.T2j33 Further 
experiments would be of great interest. 

Interference experiments have been useful in detecting 
OZI-violating transitions, since these measure a small amplitude 
directly, rather than the square. The forbidden f' production 
amplitude has been observed as interference with the tail of the 
allowed f amplitude in the reactionT2 

n-p + M'n + K+K-n (5.4Qs) 

where M" denotes either the f or f'. Similar f-f' interference 
effects between the tail of an allowed f peak and a forbidden f' 
amplitude could be seen in the reactions 

K-p + M"A + n+fi-12 (5.4%) 

K-P + I\M~ + AK'K- (backward) . (5.4oc) 

Comparison of the reactions (5.4&a) and (5.4Cb) would be interesting 
since they are very similar, with the roles of the production and 
decay of the f' interchanged. The production of the f' is forbidden 
by the OZI rule in reaction (5.4&s) and the decay allowed, while 
the decay is forbidden and the production allowed in (5.4Ob). The 
reaction (5.402) tests the forbidden baryon vertex, rather than 
the forbidden meson vertex and would give insight on the relation 
between OZI violations for the two cases. 
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Further tests of the OZI rule are now possible ' I" 

the decays of the new particles into final states containing the 
+' and f'. These also enable tests of the generalizations of the 
OZI rule to multiparticle vertices and can settle questions 
regarding the crossed Pomeron and multiply forbidden diagrams of 
Fig. 5.3. 

Tests of the 021 rule are more complicated for production 
of mesons which are not ideally mixed like the pseudoscalars 
because there is no clear selection rule forbidding the production 
of any physical particle. The pseudoscalar state analogous to the 
4 or f' whose production is forbidden by the 021 rule in rp 
reactions is a linear combination of the n and q'. However, the 
OZI rule for neutral meson production can also be tested by other 
relations which are not sele tion rules. Such relations were first 
derived by Alexander et al. 2E together with the selection rule 
forbidding @ production in xp reactions. An W(j) rotation of the 
selection rule forbidding 6 production with incident pions leads to 
the observation that an incident K- which contains no n-type quarks 
or antiquarks cannot produce the (n5) vector meson state. Since 
this state is not a physical meson but a linear combination of the 
P" and W states, the selection rule is expressible as an equality 
between Po and W production amplitudes, and similarly for the 
tensor mesons 

o(K-p + WY) = a(K-p -t POY), (5.41a) 

,$K-p + N) = b(K-p -+ A2Y). (5.41b) 

An additional relation is also obtained from the additive quark 
model for each case, 

U(K-p + ‘%'Y) = b(n-p + K*41.), (5.42a) 

c,(K-p -+ f-f) = U(n-p + K*'Y). (5.4%) 

In the quark model derivation, these relations follow from the 
requirement that the meson transition be described as a single 
quark transition with the other quark being a spectator. All meson 
transitions in Eqs. (5.42) h ave the same quark transition B -)x 
and differ only in the quantum numbers of the spectator quark, 
which is a 1 on the left-hand side and an n on the right-hand side. 
The same relations (5.42) arise in Regge exchange models which 
assume W(3) symmetry, no exotic exchanges and the OZI rule. 
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The relations (5.41) and (5.112) hold for any meson nonet 

but are not directly applicsole to the pseudoscalar mesons because 
they assume ideal mixing. IIovever, they can be combined to give a 
sum rule which holds independent of mixing angle and can be applied 
to the pseudoscalars as well 

"(K-p + WY) + U(K-p -) '+Y) = U(K-p + o‘xr) + U(n-p -( K*'Y), 

(5.43a) 

U(K-p + fY) + U(K-p + f'Y) = U(K-p -) A,'Y) + U(n-p + K*'Y). 

(5.43b) 

U(K-p + nY) + U(K-p + n'Y) = U(K-p -) x"Y) + U(n-p + K'Y). 

(5.43c) 

Additional sum rules independent of mixing angle were also 
obtained by Alexander et al. for pseudoscalar meson production, 24 

U(rc-p -t non) + "(n-p + rln) + U(n-p -) Tl'n) 

= U(K+, + K'p) t U(K-p + ?%I), 

(5.h) 

u(x+p -, non++) + u(,r++p -+ nA++) + U(~+P -+ n'A++) 

= 3U(K-p + i?'A') + U(K+p -+ K'+A++). (5.'+'+b) 

Analysis of experimental data at 3.9 GeV/c shows striking 
agreement with experiment for the relations (5.41a) and (5.42a) for 
fector meson production but strong disagreement with experiment34 
for the sum rule (5.43~) for pseudoscalar meson production where 
the left-hand side is 705 * 91 ub and the right-hand side is 
1121 i- 59 nb. There are also troubles with the sum rule (5.44a). 
'Ihe validity of the OZI rule for the pseudoscalar mesons thus 
remains unsettled. There is also the possibility that the 
conventional nonet classification does not apply to pseudoscalars. 
One possible explanation for the disagreement of the sum rules with 
experiment is to assume that the OZI rule holds, that the n is well 
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represented by a state which is mainly a member of the same octet 
that contains the pion and kaon, but that the n' is a more 

35 complicated mixture involving radially excited octet ccnfigurations. 

Since the selection rule forbidding the production of the 
(nn) states leads to equality of amplitudes for 0' and UI production 
and similarly for f and A2, the equalities (5.1Ll) include the phase 
detectable in DUJ and fA2 interference experiments and found to agree 
with the predictions.19 This interference provides another test of 
the OZI rule in reactions like (5.41) where the production of the 
(nn) state is forbidden; e.g. 

e+e- + K+K-n+n-, $,$I + K+K-s+n-, (5.45a,b) 

(qs) -) K'K-n+n-, e+e- + K+K-(K??), (5.45c,d) 

@,@ -) K+K-(I@), (4:) + K+K-(I@, (5.45e,f) 

where (qs) denotes any quark-aetiquark meson state, including new 
particles. In (5.45a-c) the x x- mass spectrum should show the 
characteristic "peak-dip" W-interference pattern, constructive on 
the low-energy side of the W peak and destructive on the high-energy 
side. In the reactions (5.45d-f) the KK spectrum in the fA2 region 
should show interference constructive in the K+K- decay mode and 
destructive in the Koi?o mode.ll Since the relative magnitudes and 
phases of the amplitudes follow from the OZI rule independent of 
kinematics, data at different energies and from several reactions 
can be combined to improve statistics. 

5.12 Applications of the OZI Rule to the New Particles 

The narrow widths of the new particles are attributed to 
the OZI rule, but there has been no reliable quantitative estimate 
of these widths from any theoretical model. There have been 
attempts to estimate the OZI violation for the new particles by 
using experimental data from the old particles as input. However, 
the analysis of the f' + xx decay in section 5.10 shows that this 
is unjustified. There is no simple way to apply these results to new 
particles which are states of new heavy quark-antiquark pairs. 
For these states the channel analogous to the KK channel involves 
pairs of mesons each containing one new heavy and one ordinary light 
quark. These channels are closed for the decays of the lowest- 
lying new meson states made of heavy quark-antiquark pairs. Thus, 
there is no possible higher order decay to hadron states made of 
light quarks via an intermediate state on the mass shell. The 
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higher-order paradox arises only in virtual transitions to states of 
pairs of mesons carrying charm or some new quantum number, and 
which must be off their mass shell. The calculation of these effects 
requires some underlying field theory as well as a knowledge of the 
spectrum and of the couplings of all these new particles in order to 
determine the effectiveness of various cancellation mechanisms. 
There is no simple estimate analogous to the one above for the 
f' + ~II decay which is dominated by the on shell transitions. 
There is no way to extrapolate the observed violations in the 
f' and '? decays to these other states by assuming a dependence on 
masses, since the effect observed in the dz and f' cases can be 
entirely attributed to open channels on shell which do not exist 
for the new particles. Such mass extrapolations could give upper 
limits for OZI violation under the reasonable assumption that the 
effects of the off shell transitions must be smaller than the 
observed violations in the f' and 6 cases. However, such 
extrapolations are very risky since the contributions of these 
off shell transitions are probably very sensitive to subtle 
cancellation mechanisms which may be very different for the old 
and the new particles, 

Thus the experimental observation that the OZI rule must 
be much better for the new particles than for the old particles 
leads to no contradictions. But there is also no simple way to 
estimate the widths of the new particles from theoretical models 
for OZI breaking. 

Another application of the OZI rule to the new particles 
has been in estimates of charmed particle production in 
experiments searching for these particles. It has been suggested 
that charmed particles might be found in associated production 
with the J/Q because the producti n of the J/$ without charmed 
particles violates the OZI rule.3 2 This argument is incorrect, as 
can be seen from the analogous case of the * and strangeness. 
Kaons are not frequently found in associated production with the 
+, even though the production of the 4 without accompanying kaons 
in pp collisions is forbidden by the OZI rule. That 6 production 
is dominated by OZI violating mechanisms is still consistent with 
the OZI rule.l9 

The OZI rule can be tested only by comparing corresponding 
pairs of processes as in Eq. (5.36). Other comparisons are 
misleading, such as comparing * production with and without kaon 
pairs in NN reactions. A proper comparison of these processes 
involves other dynamical considerations. This can be seen by 
writing 

+JIV)-'*+K+!?+X) K-S 
a(m + @J + X) = T' 
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where X contains no strange particles and the parameters K, S and 
Z are defined as 

z - u(NN -+ -+ + x) 
U(NN -* U) + xj ’ 

s _U(NN-‘UJ + K +E+ X) 
a(m -( w + x) 3 

K&r(KK+++K+~+X). 
U(NN -+ W + K + K + X) 

(5.47b) 

(5.47c) 

The parameter Z is the ratio of a corresponding pair of 
OZI-violating and OZI-conserving processes and is small in any 
model which suppresses OZI-violating transitions. The parameter S 
is also small because experiment shows that it is hard to produce 
kaon pairs. The quantity K is of the order unity since it relates 
two processes allowed by the OZI rule and differing only by the 
interchange of two members of the same vector nonet. The value of 
the ratio (5.40) is thus not determined by the OZI rule and 
requires additional dynamical input. It depends upon which of the 
two small quantities S and Z, is smaller, i.e. whether it is harder 
to violate the OZI rule or to produce a pair of strange particles. 
The available data indicate that the strange-particle-production 
factor S overwhelms the OZI-violation factor Z and that * reduction 
is dominated by the OZI-violating transition without kaons 37 
energies of at least 24 G~V. 

up to 

A similar argument holds for the production of J/a 
particles with and without pairs of charmed particles in a 
charmonium model. By analogy with Eqs. (5.46) and (5.47) 

o(NN + s/Lb + D + 5 + x) = Kc * % 
“(NIV -( J/v, + X; c ’ 

where X can now contain strange: particles but no charmed particles 
and the parameters K,Z, and C are defined by 

zc s u(m + s/b + x) 
U(NN +w +x) ’ 

C~U(NN+LU+D+~+X) 
u(NN -) UJ + x) 7 (5.49-b) 
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K = u(rm + JM + D + is + x) 
c -U(NN-tu!+D+U+X) * (5.49c) 

Again the ratio (5.48) depends on which is the smaller 
of two small quantities 7, and C; i.e. whether it is harder to 
violate the OZI rule or to produce a pair of charrned particles. 
In addition the factor Kc which is of order unity in the SU(4) 
symmetry is probably also small. Present experiments suggest here 
also that charsed particle production is suppressed more than OZI 
violating transitions and that the J/ti is produced primarily 
without charmed particles. This can also be seen in a model like 
Eq. (5.36) with Z, a universal factor describing the suppression of 
all OZI-violating transitions inv 

lo-3-lo- ? 
lving a charmed quark-antiquark 

pair. A value of about for Z, is obtained by comparing 
the width of the OZI-violating decay of the J into normal hadrons 
with expected widths of about 100 MeV for OZI-conserving decays. 
The observed total cross sections for J/d and W production are 
consistent with this value of Z, and Eq. (5.49~~). 

If the OZI rule were exact and all OZI-violating 
processes had zero cross section, all production of particles like 
the 6 and the J/Q would be via OZI-conserving reactions. However, 
once the OZI rule is broken the OZI-violating transitions are 
proportional to small but finite suppression factors as in Eqs. 
(5.47~1) and (5.49~1). Whether a given production process is 
dominated by OZI-conserving or OZI-violating transitions depends 
upon whether the OZI-conserving transition is suppressed more 
strongly than the OZI-suppression factor by a different dynamical 
mechanism, as in the reactions (5.46) and (5.48). 

VI. WHY AHE NARROW CONTINUUM STATES INTERESTING? 

The new particles promise new exciting opportunities for 
interesting research. To understand why they are so interesting 
it is instructive to compare them with the isobaric analog states. 
There are many common features. The isobaric-analog states were 
understood very shortly after their discovery, but they are still 
very interesting and have opened a nev field in nuclear physics. 
For the same reason the new particles will still be very 
interesting even after we understand their structure. There is 
much discussion about these new particles and whether they should 
be called b or J. I see that Italians know all about the Psi 
(Italian socialist party). 
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Narrow states in the continuum are interesting because 
they combine the best features of the ordinary low-lying states 
and the ordinary continuum states. In any non-trivial 
spectroscopy there are nodels which are not exact but useful 
because they are reasonably good for the low-lying states -dhere 
configurations are simple. At higher excitation the models get 
worse; the configurations are much more complicated, the density 
of states is higher, and there is much more mixing. The 
interactions neglected in the models become more unimportant at 
higher excitation, where the level density becomes greater and 
there are many configurations close together and easily mixed. 
Thus there is no simple theoretical model for the wave functions 
high in the continuum. On the other hand, high continuum states 
are very convenient for experiment because they have many open 
channels, can be excited in many ways, and provide a very rich 
source of experimental data. The isobaric analog states give 
the best features of both worlds. They are up in the continuum 
and have many possible open channels, many ways of excitation, 
and many things to study. But they also have a very simple 
structure very much like the low-lying states and simple 
theoretical models can be used. Any model good for the low-lying 
states is also just about as good for the narrow states in the 
continuum. This then opens a wide field for experimental tests 
and investigations of the various models. 

How do we know that narrow states in the continuum have 
a simple structure? We know the structure of the isobaric analog 
resonances and can answer this question in detail. But the answer 
is similar for the new particles even though we do not understand 
their structure. In both cases we know that the structure of the 
states must be simple because they are simply produced. The 
isobaric analog state is strongly produced by a nuclear charge- 
exchange reaction at zero momentun transfer on a nuclear ground 
state; i.e. by changing a neutron into a proton without changing 
its momentum. Any state strongly produced by this very simple 
operation must differ from the ground state only by a simple 
elementary excitation and cannot be a state with twelve particles 
excited. 

The new particles are made very strongly by electron- 
positron annihilation through one virtual photon. The transition 
matrix element connects the particle state with a vacuum by the 
operator of the electro;nagnetic current and is appreciable only if 
the particle has a very simple structure. For example, in sirr?ple 
quark or par-ton models, the electromagnetic current operator creates 
only single quark-antiquark pair. This tells us that the single 
pair part of the wave lunction must be appreciable in any strongly 
produced state. If it were mainly a state of thirty quarks and 
thirty antiquarks it would not have a very large matrix element for 
a single photon transition from the vacuum. 
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VII. WHAT ARE STRANGENESS AND EARYON NU?@ER? 

The new charm degree of freedom* provides a new quantum 
number like electric charge, strapqeness aEd baryon number. 2ut 
understanding charm is difficult when we still do not understand 
the old internal degrees of freedom., Q We have some understanding 
of the role of electric charge in particle interactions and dynamics 
even though we do not understand rrhy electric charge is quantized 
and universal. But our understanding of baryon number and 
strangeness is much weaker. There is no theory like quantum 
electrodynamics in which baryon number or strangeness appear as 
coupling constants defining the strengths of interactions. Tnere 
is no formula analogous to the Rutherford formula for Coulomb 
scattering describing the dependence of strong interaction 
scattering on baryon number and strange&?ess. 

A few phenomenological models and symmetries like the 
quark model and SU(3) symmetry give rough descriptions of the 
dependence of total cross sections on baryon number and strangeness. 
But these descriptions are highly inadequate and the difference 
between mesons and baryons and between strange and non-strange 
hadrons are not really understood. Furthermore, many of the 
models developed work in only one area of hadron physics and are 
incompatible with models used in other areas. For example, the 
quark model used in describing hadrons strong interactions is not 
the same as the quark model used in weak interactions. 

Consider, for example, the description by conventional 
models of the difference between pion and kaon wave functions. The 
quark model says that both are made from a quark-antiquark pair.14 
But weak interaction quarkists explain the ratio of the r( + 11 + v 
and K + 11 + V decay requiring the wave functions at the origin to 
be very different as described by IJeisskopf-Van-Royen% formula 

(7.1) 

Strong interaction quarkists say that the difference 
between pion and kaon wave functions is measured by the difference 
between their scattering cross sections on nucleons. These differ 
by less than 2C$. Recent data at high energies show that ~0 and 
Kp differential cross sections approach equality with increasing 
momentum transfer. This suggests equality within 20% of the mean 
square radii of pion and kaon wave functions and nearly identical 
short distance behavior, 
Eq. (7.1) . 

in sharp contrast with the weak quarkist 
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The very precise experimental data4' now available on 
pion, kaon and nucleon total cross sections give us some information 
about the difference between the interactions of strange and 
nonstrange particles with matter. Careful examination of the data 
show that this difference 

$1 
's very interesting but also very puzzling 

and not really understood. Instead of the conventional plot of 
total cross sections versus laboratory momentum on a logarithmic 
scale, we show the systematics in a more interesting plot (Fig. 7.1) 
with a square root scale rather than a logarithm'c scale for Rlab 
and with the total cross section multiplied by k. This is 
equivalent at these high energies to a plot against center-of-mass 
momentum of t'ne imaginary part of the forward amplitude obtained 
from the total cross section by the optical theorem. Theoretical 
reasons why the curve of 7.1 is so much simpler than the standard 
plot follow from a two-component description of the cross sections 
with a Regge component varying as s -l/2 and a pomeron component 
varying slowly as a function of energy. A more detailed discussion 

b 01 I I I I I I , I t I 
0 4 8 12 16 

4% (GeV/d”* 

Fig. 7.1. utot4+ vs. 6. Nucleon cross sections 
multiplied by 2/j. 
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is given elsewhere. 42 For our purposes this pvticular plot shows 
very clearly that there is a difference between strange and non- 
strange parti~cles and that there are puzzles not explained by the 
quark model. 

In Fig. 7.1 the nucleon-nucleon and nucleon-antinucleon 
cross sections are multiplied by a factor 213. The six quantities 
plotted are just those predicted to be equal asyn?ptotically in the 
simple quark model with the pomeron component an SU(3) singlet 
coupled equally to pions and kaons and coupled to rr.esons and 
baryons by simple quark counting prescriptions. Figure 7.1 shows 
that these cross sections are indeed all equal at the 20$ level. 
However, beyond this approximation of "seen one hadron, seen them 
all" the difference between the flp and the pp cross sections is 
seen to be strangely similar to the difference between the np and 
Kp cross sections. The difference between mesons and baryons 
seems to be similar to the difference between nonstrange and strange 
mesons. 

This regularity is shown more precisely by examining 
linear combinations of cross sections which have no Regge component 
and are therefore conventionally assumed to be pure pomeron. The 
K+p and pp channels are exotic and have no contribution from the 
leading Regge exchanges under the common assumption of exchange 
degeneracy. The following linear combinations of meson-nucleon 
cross sections are constructed to cancel the contributions of the 
leading Regge trajectories 

U(+p) = O(K+p) + o(K-p) - m(n-p) (7.h) 

A(rrK) = C'(n-P) - o(K-P). (7.lb) 

Figure 7.2 shows these two quantities on the conventional plot of 
c?mss section versus Plab on a log scale. 

U(%) as defined by Eq. (7.la) is the quark model 
expression for o(+p); i.e., the cross section for the scattering 
o? a strange quark-antiquark pair on a proton. The very simple 
energy behavior of this quantity as seen in Fig. 7.2 is striking. 
It shows a monotonic rise beginning already at 2 GeV/c. That total 
cross sections rise at high energies was first noticed by Serpukhov 
data from 20-50 GeV/c, but the older data at lower energies already 
show this rising behavior in 'J(%). If anyone has suggested 
something particularly fundamental about this cross section for 
strange quarks on a nucleon before the Serpukhov data were 
available and concluded that its rising cross section indicated 
that all cross sections would eventually rise he would naturally 
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Fig. 7.2. Plots of Eqs. (7.1) and (7.2). 

have been disregarded as crazy. But now that the whole picture up 
to 200 GeV/c is available we may conclude that there is indeed 
something simpler and more fundamental about the cross sections 
for strange quarks on a proton target. Understanding this simpler 
behavior may help us to understand the more complicated energy 
behavior of the other cross sections. 

The quantity 4(nK) defined by Eq. (7.lb) represents the 
difference in the scatt ering of a strange particle and a nonstrange 
particle on a proton target. In the quark model this is the 
difference between the scattering of a strange quark and a nonstrange 
quark on a proton target after the leading Regge contributions have 
been removed. This differen.ce between strange and nonstrange also 
has a very simple energy behavior, decreasing constantly and very 
slowly (less than a factor of 2 over a range Plab Of two orders of 
magnitude). So far there is no good explanation for why strange 
and nonstrange mesons behave differently in just this way. 
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Since the two quantities (7.1) have no contribution fro3 

the leading Regge trajectories they represent something loosely 
called the pomeron. However, their energy behaviors are different 
from one another and also from that of the quantities o(l?p) and 
o(pp) which should also be "pure pomeron.w However the following 
linear combinations of o(K+p) and o(pp) have exactly the same 
energy behavior as the meson-baryon linear combinations (7.1) 

ol(pK) = 2 ~(K+P) - $ I 

A(m) = 5 O(PP) -; U(K+p). 

These quantities are also plotted in Fig. 7.2. 

quantities 
The equality of the quantities (7.2) and the corresponding 

(7.1) suggest that the pomeron, defined as what is left 
in the total cross sections after the leading Regge contributions 
are removed by the standard prescription, consists of two 
components, 
slowly. 

one rising slowly with energy and the other decreasing 
The coefficients in Eq. (7.2) were not picked arbitrarily 

but were chosen by a particular model. In this model the rising 
component of the total cross section is assumed to satisfy the 
standard quark model recipe exactly. 

UR(Kp) = oR(npj =; UR(pp) = $ oR(Yp) =; ",(r~), (7.3a) 

where Y denotes a A or x hyperon. The falling component has been 
assumed to satisfy the following relation 

oF(Kp) = $ UF(sp) = ; oE(pp) = $ oF(Yp) = $ oF(?p). (7.3) 

This particular behavior is suggested by a model in which the 
correction to a simple quark-counting recipe comes from a double 
exchange diagram i valving a pomeron and an 

Xl 
f coupled to the 

incident particle. 

We thus see unresolved problems in the total cross- 
section data associated with the questions of what is the 
difference between strange and nonstrange particles and vhat is the 
nature of the pomeron. Note that Eq. (3.lb) defines the difference 
between the scattering of a nonstrange quark and a strange quark 
while Eq. (7.Zb) can be interpreted as the difference between the 
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scattering of a quark in a baryon and a quark in a meson. The 
fact that the strange-nonstrange difference and the meson-baryon 
difference are equal and have the same energy behavior over such 
a wide range is a puzzle which may be explained by pomeron-f 
double exchange but may also indicate something deeper. 

The cross section differences d(xK) and A(m) are both 
predicted to vanish in the simple model where the pomeron is an 
SU(3) singlet which is coupled to the quark number and all the 
cumes of Fig. 7.1 are equal. The deviation from the additive 
quark model ratio of 2/j for meson to baryon scattering appears 
as a finite value of d(MB), the deviation of the pomeron coupling 
from an SU(3) singlet appears as a finite value of A.(nK). One 
might ask whether both these decreasing quantities approach zero 
at high energies, so that the simple model would be valid in 
asymptopia. 

:HY 

E 

b 

I I I I 
20 50 100 200 

%b (GeV/c) 

Fig. 7.3. Plots of A(nK) and A(MB) on an expanded scale. 
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A close look at the experimental plots on an expanded 
scale of A(xK) and A(m) in Fig. 7.3 reveals a small difference 
in the behavior at the highest energies. The curve for A(xK) 
seems to be leveling off above 50 GeV/c, while that for A(MB) 
continues decreasing monotonically. This trend seems to continue 
in the one or t;ro additional points available up to 280 GeV/c which 
are not plotted. Additional data up to 400 GeV/c should determine 
whether A(nK) has definitely stopped decreasing and is approaching 
a constant, while A(MB) is decreasing. If this is the case, then 
the additive quark model becomes good at high energies while pions 
and kaons continue to look different even at asymptopia and the 
SU(3) relation never becomes good. The equality observed between 
these two differences over the 6-200 G&/c range and described 
by a two-component Pomeron ultimately breaks down at higher energies. 

A search for similar systematics in elastic hadron 
scattering diff rential cross section data has led to new surprises 
and paradoxes.3E . With only differential cross section data avail- 
,a;;eqg;t;;yle;a;led amplitude analysis, it is convenient to define 

S(Hp) = [g (??p) +$! (HP)] l/2 (7.4) 

where H is any hadron. This quantity S(Hp) is assumed to give a 
good approximation for the Pomeron contribution to the Hp 
scattering amplitude. With this assumption the simple additive 
quark model prediction that A(m)= 0 becomes 

S(~P) = (~/~)S(PP) (7.5a) 

when we use S(rrp) to represent a typical meson baryon cross section. 
The assumption that the Pomeron is a SU(3) singlet predicts 
A(nK) = 0 and 

S(~P) = S(KP). (7.P) 

The two relations (7.5a) and (7.5b) describe the dependence of the 
scattering amplitude on baryon number and strangeness, respectively. 
The two component Pomeron model which relates the deviations from 
the two predictions (7.5a) and (7.5b) predicts the weaker sum rule 

S(~P) =; S(Kp) -+$ S(pp). (7.6) 
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The experimental data show that the weaker s&m rule 
(7.6) is in much better agreement with experiment than the 
additive quark model prediction (7.5a). However, the W(3) 
prediction which is not VCFJ good at t = 0 becomes better at larger 
values of t and becomes much better than the two comoonent Pomeron 
prediction (7.6) or the additive quark model prediction (7.5a). 
Two examples of this comparison with experiment are given in 
Table 7.1q The same qualitative features are present in all the 
data. 

Table 7.1 

Tests of Additive Quark Model (AQM), Two-Component Pomeron (P2) 
and SU(3) Relations Between Differential Cross Sections. 
RHShHS of Eqs. (7.5a), (7.5b) and (7.6). 

P = 100 GeV!c P = 175 GeV/c 

(&) 
AQN su(3) 

(7.5a) (7p:6) (7.5b) (Gei!c) (;:a) (7pF6) 
su(3) 

(7.5b) 

0.0 1.2 1.0 0.84 0.0 1.1 0.97 0.84 

-0. OS 1.0 0.95 0.86 -0.08 0.98 0.92 0.85 
-0.16 0.94 0.91 0.88 -0.16 0.89 0.88 0.86 
-0.24 0.85 0.87 0.90 -0.24 0.81 0.84 0.88 
-0.32 0.78 0.85 0.92 -0.32 0.74 0.81 0.89 
-0.40 0.71 0.83 0.94 -0.40 c.68 0.79 0.90 
-0.48 0.66 0.81 0.97 -0.48 0.63 0.77 0.92 
-0.55 0.61 0.80 1.0 -0.56 0.58 0.76 0.93 
-0.64 0.56 0.80 1.0 -0.64 0.54 0.74 0.95 
-0.72 0.53 0.80 1.1 -0.72 0.50 0.73 0.96 

-0.80 0.50 0.80 1.1 -0.80 0.47 0.72 0.98 

The comparison with experiment of relations (7.5a) 
and (7.6) does not really add any nev qualitative information. 
It is summed up by the observation that at the optical ooint the 
relation (7.5a) is not very good and the relation (7.6)'is much 
better and that baryon-baryon cross sections decrease much more 
rapidly with t than meson-baryon cross sections. The behavior 
at the optical point is expected from the similar behavior of total 
cross sections. The high t behavior is expected since naive 
additive quark model predictions (7.5a) and (7.6) neglect 
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differences between meson and baryon wave functions. These 
differences introduce additional form factors into the scattering 
amplitudes, which cause baryon amplitudes to decrease more rapidly 
with increasing t than meson amplitudes. 

However, the improvement of the relation (7.5b) with 
increasing t comes as a complete surprise. 
and kaons should look more alike45 at high 

One can ask why pions 
t than at low t. One 

might also ask whether the two are really approaching equality or 
whether there will be a cross over and that still at higher t the 
amplitude will differ in the opposite direction. 

We thus seem to see a peculiar systematics in which the 
additive qua?k model becomes good at 4 = 0 and high s but not at 
high t, the SU@)-symmetric pomeron becomes good at high t, but 
not at t = 0, even at high 2, and the two-component pomeron 
description holds at t = 0 and s between 6 and 200 GeV/c, where 
there are discrepancies in both the additive quark model and the 
W(3)-symnetric pomeron. Further data on total cross sections at 
higher energy, differential cross sections at higher momentum 
transfer, and hyperon total and differential cross sections 
everywhere will show whether these puzzling features are really in 
the data, and will provide clues for our understanding of the 
differences between strange and nonstrange particles and between 
mesons and baryons. 
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